Find the power series in x for the general solution. (1 − x²)y" — 8xy' — 12y = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

can you help me solve this problem show your work how to find m, how to get the answer below.

 

5. an+2
a2m+3 =
(n+3)(n+4)
(n + 2)(n+1)
m + 2) (2m + 5)
(m + 1) (2m + 3)
∞
·an; a2m+2=
(m + 2) (2m + 3)
(m + 1)(2m + 1)
-a2m+1, so a2m+1
a1
Y
= ao Σ(m + 1)(2m +1)x²m +
m=0
-a2m, SO a2m = (m + 1) (2m + 1)ao;
(m + 1) (2m + 3)
3
-a₁. Thus,
Σ(m + 1) (2m+3)x²m+
m=0
Transcribed Image Text:5. an+2 a2m+3 = (n+3)(n+4) (n + 2)(n+1) m + 2) (2m + 5) (m + 1) (2m + 3) ∞ ·an; a2m+2= (m + 2) (2m + 3) (m + 1)(2m + 1) -a2m+1, so a2m+1 a1 Y = ao Σ(m + 1)(2m +1)x²m + m=0 -a2m, SO a2m = (m + 1) (2m + 1)ao; (m + 1) (2m + 3) 3 -a₁. Thus, Σ(m + 1) (2m+3)x²m+ m=0
5. Find the power series in x for the general solution.
(1 − x²)y" — 8xy' – 12y = 0
Transcribed Image Text:5. Find the power series in x for the general solution. (1 − x²)y" — 8xy' – 12y = 0
Expert Solution
steps

Step by step

Solved in 7 steps with 7 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,