Find the position of a body moving on a coordinate line at time t for an acceleration a= dt² initial velocity v(0) = 20, and initial position s(0) = 6. ... The position of the body at time t is given by s =

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Find the position of a body moving on a coordinate line at time \( t \) for an acceleration \( a = \dfrac{d^2 s}{dt^2} = e^t \), initial velocity \( v(0) = 20 \), and initial position \( s(0) = 6 \).

---

**Solution:**

The position of the body at time \( t \) is given by \( s = \text{____} \).

---

To solve this problem:

1. **Determine the velocity function:** We start with the given acceleration \( a = e^t \). Since \( a = \dfrac{d^2 s}{dt^2} \), we integrate to find the velocity \( v(t) \):
   \[
   \dfrac{dv}{dt} = e^t \implies v(t) = \int e^t \, dt = e^t + C_1
   \]

2. **Apply the initial velocity condition:** Given \( v(0) = 20 \),
   \[
   v(0) = e^0 + C_1 = 1 + C_1 = 20 \implies C_1 = 19
   \]
   Therefore, the velocity function is:
   \[
   v(t) = e^t + 19
   \]

3. **Determine the position function:** Next, we integrate to find the position \( s(t) \):
   \[
   v(t) = \dfrac{ds}{dt} = e^t + 19 \implies s(t) = \int (e^t + 19) \, dt = e^t + 19t + C_2
   \]

4. **Apply the initial position condition:** Given \( s(0) = 6 \),
   \[
   s(0) = e^0 + 19 \cdot 0 + C_2 = 1 + C_2 = 6 \implies C_2 = 5
   \]
   Therefore, the position function is:
   \[
   s(t) = e^t + 19t + 5
   \]

Thus, the position of the body at time \( t \) is \( \boxed{e^t + 19t + 5} \).
Transcribed Image Text:**Problem Statement:** Find the position of a body moving on a coordinate line at time \( t \) for an acceleration \( a = \dfrac{d^2 s}{dt^2} = e^t \), initial velocity \( v(0) = 20 \), and initial position \( s(0) = 6 \). --- **Solution:** The position of the body at time \( t \) is given by \( s = \text{____} \). --- To solve this problem: 1. **Determine the velocity function:** We start with the given acceleration \( a = e^t \). Since \( a = \dfrac{d^2 s}{dt^2} \), we integrate to find the velocity \( v(t) \): \[ \dfrac{dv}{dt} = e^t \implies v(t) = \int e^t \, dt = e^t + C_1 \] 2. **Apply the initial velocity condition:** Given \( v(0) = 20 \), \[ v(0) = e^0 + C_1 = 1 + C_1 = 20 \implies C_1 = 19 \] Therefore, the velocity function is: \[ v(t) = e^t + 19 \] 3. **Determine the position function:** Next, we integrate to find the position \( s(t) \): \[ v(t) = \dfrac{ds}{dt} = e^t + 19 \implies s(t) = \int (e^t + 19) \, dt = e^t + 19t + C_2 \] 4. **Apply the initial position condition:** Given \( s(0) = 6 \), \[ s(0) = e^0 + 19 \cdot 0 + C_2 = 1 + C_2 = 6 \implies C_2 = 5 \] Therefore, the position function is: \[ s(t) = e^t + 19t + 5 \] Thus, the position of the body at time \( t \) is \( \boxed{e^t + 19t + 5} \).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning