Find the points on the graph of y = tan x, 0sxs2n, where the tangent line is parallel to the line 4x - y = 7.
Find the points on the graph of y = tan x, 0sxs2n, where the tangent line is parallel to the line 4x - y = 7.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Points where the tangent line is parallel?
![**Problem Statement:**
Find the points on the graph of \( y = \tan x \), for \( 0 \leq x \leq 2\pi \), where the tangent line is parallel to the line \( 4x - y = 7 \).
**Solution Strategy:**
To solve this problem, we need to find where the derivative of \( y = \tan x \) equals the slope of the line \( 4x - y = 7 \).
1. **Identify the Slope**: The given line \( 4x - y = 7 \) can be rewritten in slope-intercept form as \( y = 4x - 7 \). Hence, the slope is \( 4 \).
2. **Find the Derivative**: The derivative of \( y = \tan x \) is \( y' = \sec^2 x \).
3. **Set the Derivative Equal to the Slope**: Solve \( \sec^2 x = 4 \).
- **Solve for \( x \):**
\[
\sec^2 x = 4 \implies \cos^2 x = \frac{1}{4} \implies \cos x = \pm \frac{1}{2}
\]
- **Find Solutions in the Interval \( 0 \leq x \leq 2\pi \):**
\[
\cos x = \frac{1}{2} \quad \Rightarrow \quad x = \frac{\pi}{3}, \frac{5\pi}{3}
\]
\[
\cos x = -\frac{1}{2} \quad \Rightarrow \quad x = \frac{2\pi}{3}, \frac{4\pi}{3}
\]
4. **Find Corresponding \( y \) Values**: Calculate \( y = \tan x \) for the above values of \( x \).
- \( x = \frac{\pi}{3} \): \( y = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \)
- \( x = \frac{5\pi}{3} \): \( y = \tan\left(\frac{5\pi}{3}\right) = -\sqrt{3} \)
- \( x = \](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe7616f65-0250-4f00-8be8-7f3ea815d241%2F007c9d53-ba58-46e7-b33f-dfc3ea7a34d5%2Fmi3hbyk_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the points on the graph of \( y = \tan x \), for \( 0 \leq x \leq 2\pi \), where the tangent line is parallel to the line \( 4x - y = 7 \).
**Solution Strategy:**
To solve this problem, we need to find where the derivative of \( y = \tan x \) equals the slope of the line \( 4x - y = 7 \).
1. **Identify the Slope**: The given line \( 4x - y = 7 \) can be rewritten in slope-intercept form as \( y = 4x - 7 \). Hence, the slope is \( 4 \).
2. **Find the Derivative**: The derivative of \( y = \tan x \) is \( y' = \sec^2 x \).
3. **Set the Derivative Equal to the Slope**: Solve \( \sec^2 x = 4 \).
- **Solve for \( x \):**
\[
\sec^2 x = 4 \implies \cos^2 x = \frac{1}{4} \implies \cos x = \pm \frac{1}{2}
\]
- **Find Solutions in the Interval \( 0 \leq x \leq 2\pi \):**
\[
\cos x = \frac{1}{2} \quad \Rightarrow \quad x = \frac{\pi}{3}, \frac{5\pi}{3}
\]
\[
\cos x = -\frac{1}{2} \quad \Rightarrow \quad x = \frac{2\pi}{3}, \frac{4\pi}{3}
\]
4. **Find Corresponding \( y \) Values**: Calculate \( y = \tan x \) for the above values of \( x \).
- \( x = \frac{\pi}{3} \): \( y = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \)
- \( x = \frac{5\pi}{3} \): \( y = \tan\left(\frac{5\pi}{3}\right) = -\sqrt{3} \)
- \( x = \
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)