Find the percentage of area under a normal curve between the mean and the given number of standard deviations from the mean. This problem can be solved using technology or the table for the standard normal curve from your text. Click here to view page 1 of the table. Click here to view page 2 of the table. 0.1

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Question

Help solve 

0
Area
x-μ
AREA UNDER A NORMAL CURVE TO THE LEFT OF Z, WHERE Z
O
.04
.05
.08
.02
.00 .01
.03
.07
.06
-3.4 .0003 .0003 0003 .0003 .0003 .0003 .0003 .0003 .0003
-3.3 .0005 .0005 0005 .0004 0004 .0004 .0004 .0004 .0004
-3.2 .0007 .0007 0006 .0006 .0006 .0006 .0006 .0005 0005
-3.1 .0010 .0009 0009 .0009 0008 0008 .0008 .0008 0007
-3.0 .0013 .0013 .0013 .0012 0012 .0011 .0011 .0011 .0010
-2.9 .0019 .0018 0017 .0017 .0016 .0016 .0015 0015 0014 .0014
-2.8 .0026 .0025 0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
-2.7 .0035 .0034 .0033 .0032 0031 .0030 .0029 0028 .0027
-2.6 .0047 .0045 0044 0043 0041 0040 .0039 0038 .0037
-2.5 .0062 .0060 .0059 .0057 .0055 0054 0052 .0051 .0049
-2.4
.0069 .0068 .0066 .0064
.0026
.0036
.0048
0082 .0080 .0078 .0075 .0073 .0071
.09
.0002
.0003
.0005
.0007
0010
Area under a normal curve to the left of z (page 2)
0
.03
.04
.05
.01 .02
3446 3409 3372
.3821 .3783 3745
4207 4168 4129
.5517
5910
6179 6217 .6255 .6293
5199 5239 5279 5319
.5636 .5675
5596
5714
5987 .6026 .6064 6103
3
.06 .07 .08
-.4
3336 3300 3264 3228 3192 3156
-.3
3707 .3669 3632 3594 3557 3520
-.2
4090 4052 4013 3974 3936 3897
-.1 4602 4562 4522 4483 4443 4404 4364 .4325 4286
-.0 .5000 4960 4920 4880 4840 4801 4761 4721 4681
5000 5040 5080 5120 5160
5557
5398 5438 5478
5793 5832 5871
5948
.6331
.6368 6406 .6443 6480
.4 .6554 .6591 .6628 .6664 .6700 .6736 6772 .6808 .6844
.6915 6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190
.7257 .7291 7324 7357 7389 7422 .7454 7486 7517
.7580 7611 .7642 7673 7704 7734 .7764
.7881 7910 .7939 .7967 .7995 8023 .8051
.8159 .8186 .8212 .8238 .8264 .8289 .8315
8413 8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599
.8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 8810
1.2 .8849 8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997
1.3 9032 9049 .9066 9082 .9099 9115 9131 9147 9162
1.4 9192 9207 9222 9236 9251 9265 9278 9292 .9306
7794 .7823
.8078 .8106
.8340 8365
1.0
1.1
.0
1
2
AREA UNDER A NORMAL CURVE (continued)
.00
5
.6
.7
.8
.9
.09
3121
3483
3859
4247
4641
5359
5753
.6141
.6517
.6879
7224
.7549
.7852
8133
8389
.8621
8830
.9015
9177
9319
Transcribed Image Text:0 Area x-μ AREA UNDER A NORMAL CURVE TO THE LEFT OF Z, WHERE Z O .04 .05 .08 .02 .00 .01 .03 .07 .06 -3.4 .0003 .0003 0003 .0003 .0003 .0003 .0003 .0003 .0003 -3.3 .0005 .0005 0005 .0004 0004 .0004 .0004 .0004 .0004 -3.2 .0007 .0007 0006 .0006 .0006 .0006 .0006 .0005 0005 -3.1 .0010 .0009 0009 .0009 0008 0008 .0008 .0008 0007 -3.0 .0013 .0013 .0013 .0012 0012 .0011 .0011 .0011 .0010 -2.9 .0019 .0018 0017 .0017 .0016 .0016 .0015 0015 0014 .0014 -2.8 .0026 .0025 0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 -2.7 .0035 .0034 .0033 .0032 0031 .0030 .0029 0028 .0027 -2.6 .0047 .0045 0044 0043 0041 0040 .0039 0038 .0037 -2.5 .0062 .0060 .0059 .0057 .0055 0054 0052 .0051 .0049 -2.4 .0069 .0068 .0066 .0064 .0026 .0036 .0048 0082 .0080 .0078 .0075 .0073 .0071 .09 .0002 .0003 .0005 .0007 0010 Area under a normal curve to the left of z (page 2) 0 .03 .04 .05 .01 .02 3446 3409 3372 .3821 .3783 3745 4207 4168 4129 .5517 5910 6179 6217 .6255 .6293 5199 5239 5279 5319 .5636 .5675 5596 5714 5987 .6026 .6064 6103 3 .06 .07 .08 -.4 3336 3300 3264 3228 3192 3156 -.3 3707 .3669 3632 3594 3557 3520 -.2 4090 4052 4013 3974 3936 3897 -.1 4602 4562 4522 4483 4443 4404 4364 .4325 4286 -.0 .5000 4960 4920 4880 4840 4801 4761 4721 4681 5000 5040 5080 5120 5160 5557 5398 5438 5478 5793 5832 5871 5948 .6331 .6368 6406 .6443 6480 .4 .6554 .6591 .6628 .6664 .6700 .6736 6772 .6808 .6844 .6915 6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7257 .7291 7324 7357 7389 7422 .7454 7486 7517 .7580 7611 .7642 7673 7704 7734 .7764 .7881 7910 .7939 .7967 .7995 8023 .8051 .8159 .8186 .8212 .8238 .8264 .8289 .8315 8413 8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 8810 1.2 .8849 8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 1.3 9032 9049 .9066 9082 .9099 9115 9131 9147 9162 1.4 9192 9207 9222 9236 9251 9265 9278 9292 .9306 7794 .7823 .8078 .8106 .8340 8365 1.0 1.1 .0 1 2 AREA UNDER A NORMAL CURVE (continued) .00 5 .6 .7 .8 .9 .09 3121 3483 3859 4247 4641 5359 5753 .6141 .6517 .6879 7224 .7549 .7852 8133 8389 .8621 8830 .9015 9177 9319
Find the percentage of area under a normal curve between the mean and the given number of standard deviations from
the mean. This problem can be solved using technology or the table for the standard normal curve from your text.
Click here to view page 1 of the table. Click here to view page 2 of the table.
0.1
The percentage of area under the normal curve between the mean and 0.1 standard deviations from the mean is%.
(Round to the nearest integer as needed.)
Transcribed Image Text:Find the percentage of area under a normal curve between the mean and the given number of standard deviations from the mean. This problem can be solved using technology or the table for the standard normal curve from your text. Click here to view page 1 of the table. Click here to view page 2 of the table. 0.1 The percentage of area under the normal curve between the mean and 0.1 standard deviations from the mean is%. (Round to the nearest integer as needed.)
Expert Solution
Step 1

We will use Excel to find the required area under the standard normal curve.

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman