Find the particular solution determined by the initial condition. f'(x) = rx) = 2x2/5 - 3x, f(1) = -6 f(x) = D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
4.
**Problem Statement:**

**Find the particular solution determined by the initial condition.**

The given differential equation is:

\[ f'(x) = 2x^{2/5} - 3x^4 \;,\; f(1) = -6 \]

**Solution:**

The problem requires finding the function \( f(x) \) given its derivative \( f'(x) \) and an initial condition. To find \( f(x) \), we need to integrate the given derivative and use the initial condition to determine the constant of integration.

1. Integrate \( f'(x) \):

\[ f(x) = \int (2x^{2/5} - 3x^4) \, dx \]

2. Solve the integration:

\[ f(x) = 2 \int x^{2/5} \, dx - 3 \int x^4 \, dx \]

3. Apply the power rule of integration:

\[ f(x) = 2 \left( \frac{5}{7} x^{7/5} \right) - 3 \left( \frac{1}{5} x^5 \right) + C \]

\[ f(x) = \frac{10}{7} x^{7/5} - \frac{3}{5} x^5 + C \]

4. Use the initial condition \( f(1) = -6 \):

\[ -6 = \frac{10}{7} (1)^{7/5} - \frac{3}{5} (1)^5 + C \]

\[ -6 = \frac{10}{7} - \frac{3}{5} + C \]

5. Calculate the constants:

\[ -6 = \frac{50 - 21}{35} + C \]
\[ -6 = \frac{29}{35} + C \]
\[ C = -6 - \frac{29}{35} \]
\[ C = -\frac{210}{35} - \frac{29}{35} \]
\[ C = -\frac{239}{35} \]

6. Substitute \( C \) back into the integrated function:

\[ f(x) = \frac{10}{7} x^{7/5} - \frac{3}{5} x^5 - \frac{239}{35} \]

**Answer:**

\[ f
Transcribed Image Text:**Problem Statement:** **Find the particular solution determined by the initial condition.** The given differential equation is: \[ f'(x) = 2x^{2/5} - 3x^4 \;,\; f(1) = -6 \] **Solution:** The problem requires finding the function \( f(x) \) given its derivative \( f'(x) \) and an initial condition. To find \( f(x) \), we need to integrate the given derivative and use the initial condition to determine the constant of integration. 1. Integrate \( f'(x) \): \[ f(x) = \int (2x^{2/5} - 3x^4) \, dx \] 2. Solve the integration: \[ f(x) = 2 \int x^{2/5} \, dx - 3 \int x^4 \, dx \] 3. Apply the power rule of integration: \[ f(x) = 2 \left( \frac{5}{7} x^{7/5} \right) - 3 \left( \frac{1}{5} x^5 \right) + C \] \[ f(x) = \frac{10}{7} x^{7/5} - \frac{3}{5} x^5 + C \] 4. Use the initial condition \( f(1) = -6 \): \[ -6 = \frac{10}{7} (1)^{7/5} - \frac{3}{5} (1)^5 + C \] \[ -6 = \frac{10}{7} - \frac{3}{5} + C \] 5. Calculate the constants: \[ -6 = \frac{50 - 21}{35} + C \] \[ -6 = \frac{29}{35} + C \] \[ C = -6 - \frac{29}{35} \] \[ C = -\frac{210}{35} - \frac{29}{35} \] \[ C = -\frac{239}{35} \] 6. Substitute \( C \) back into the integrated function: \[ f(x) = \frac{10}{7} x^{7/5} - \frac{3}{5} x^5 - \frac{239}{35} \] **Answer:** \[ f
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Points, Lines and Planes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,