Find the orthogonal projection of v = projy(v) = [8] -25 H -7 onto the subspace V of R³ spanned by 24 Q-O -4 and 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
### Orthogonal Projection in Vector Spaces

In this section, we will discuss how to find the orthogonal projection of a vector onto a subspace.

**Problem Statement:**
Given a vector \( \mathbf{v} \) and a subspace \( V \) of \( \mathbb{R}^3 \), find the orthogonal projection of \( \mathbf{v} \) onto \( V \).

**Given Data:**

- Vector \( \mathbf{v} \):
  \[
  \mathbf{v} = \begin{bmatrix}
  -25 \\
  -7 \\
  24
  \end{bmatrix}
  \]

- Subspace \( V \) of \( \mathbb{R}^3 \), spanned by:
  \[
  \begin{bmatrix}
  1 \\
  -4 \\
  -2
  \end{bmatrix}
  \quad \text{and} \quad
  \begin{bmatrix}
  2 \\
  0 \\
  7
  \end{bmatrix}
  \]

**Objective:**
To find \( \text{proj}_V \mathbf{v} \):
\[
\text{proj}_V \mathbf{v} = \begin{bmatrix}
\boxed{} \\
\boxed{} \\
\boxed{}
\end{bmatrix}
.
\]

**Solution Outline:**
1. **Identify the Basis Vectors of the Subspace:**
   Let \( \mathbf{u}_1 = \begin{bmatrix}
  1 \\
  -4 \\
  -2
  \end{bmatrix} \)
   and \( \mathbf{u}_2 = \begin{bmatrix}
  2 \\
  0 \\
  7
  \end{bmatrix} \).

2. **Compute the Projection of \( \mathbf{v} \) onto the Span of \( \mathbf{u}_1 \) and \( \mathbf{u}_2 \):**
   The orthogonal projection \( \text{proj}_V \mathbf{v} \) is the sum of the projections of \( \mathbf{v} \) onto each of the basis vectors \( \mathbf{u}_1 \) and \( \mathbf{u}_2 \):
   \[
   \text{
Transcribed Image Text:### Orthogonal Projection in Vector Spaces In this section, we will discuss how to find the orthogonal projection of a vector onto a subspace. **Problem Statement:** Given a vector \( \mathbf{v} \) and a subspace \( V \) of \( \mathbb{R}^3 \), find the orthogonal projection of \( \mathbf{v} \) onto \( V \). **Given Data:** - Vector \( \mathbf{v} \): \[ \mathbf{v} = \begin{bmatrix} -25 \\ -7 \\ 24 \end{bmatrix} \] - Subspace \( V \) of \( \mathbb{R}^3 \), spanned by: \[ \begin{bmatrix} 1 \\ -4 \\ -2 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 2 \\ 0 \\ 7 \end{bmatrix} \] **Objective:** To find \( \text{proj}_V \mathbf{v} \): \[ \text{proj}_V \mathbf{v} = \begin{bmatrix} \boxed{} \\ \boxed{} \\ \boxed{} \end{bmatrix} . \] **Solution Outline:** 1. **Identify the Basis Vectors of the Subspace:** Let \( \mathbf{u}_1 = \begin{bmatrix} 1 \\ -4 \\ -2 \end{bmatrix} \) and \( \mathbf{u}_2 = \begin{bmatrix} 2 \\ 0 \\ 7 \end{bmatrix} \). 2. **Compute the Projection of \( \mathbf{v} \) onto the Span of \( \mathbf{u}_1 \) and \( \mathbf{u}_2 \):** The orthogonal projection \( \text{proj}_V \mathbf{v} \) is the sum of the projections of \( \mathbf{v} \) onto each of the basis vectors \( \mathbf{u}_1 \) and \( \mathbf{u}_2 \): \[ \text{
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,