Find the orthogonal projection of the vector: onto the line that consists of all the scalar multiples of the vector 8

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Linear Algebra - Orthogonal Projection Question in the image attached

### Problem Statement

Find the orthogonal projection of the vector:
\[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

onto the line that consists of all the scalar multiples of the vector:
\[ \begin{bmatrix} 6 \\ 8 \end{bmatrix} \]

### Solution
To find the orthogonal projection of a vector **v** onto a vector **u**, we use the projection formula:

\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \]

Substituting the given vectors:

**v**:
\[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]

**u**:
\[ \begin{bmatrix} 6 \\ 8 \end{bmatrix} \]

First, we calculate the dot product \( \mathbf{v} \cdot \mathbf{u} \):
\[ \mathbf{v} \cdot \mathbf{u} = 1 \cdot 6 + 1 \cdot 8 = 14 \]

Next, we calculate the dot product \( \mathbf{u} \cdot \mathbf{u} \):
\[ \mathbf{u} \cdot \mathbf{u} = 6 \cdot 6 + 8 \cdot 8 = 36 + 64 = 100 \]

Now, we substitute these into the projection formula:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{14}{100} \mathbf{u} = \frac{7}{50} \mathbf{u} \]

So, the orthogonal projection of \(\mathbf{v}\) onto \(\mathbf{u}\) is:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{7}{50} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} \frac{42}{50} \\ \frac{56}{50} \end{bmatrix} = \begin{bmatrix} 0.84 \\ 1.12 \end{bmatrix} \]

Thus, the orthogonal projection
Transcribed Image Text:### Problem Statement Find the orthogonal projection of the vector: \[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \] onto the line that consists of all the scalar multiples of the vector: \[ \begin{bmatrix} 6 \\ 8 \end{bmatrix} \] ### Solution To find the orthogonal projection of a vector **v** onto a vector **u**, we use the projection formula: \[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \] Substituting the given vectors: **v**: \[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \] **u**: \[ \begin{bmatrix} 6 \\ 8 \end{bmatrix} \] First, we calculate the dot product \( \mathbf{v} \cdot \mathbf{u} \): \[ \mathbf{v} \cdot \mathbf{u} = 1 \cdot 6 + 1 \cdot 8 = 14 \] Next, we calculate the dot product \( \mathbf{u} \cdot \mathbf{u} \): \[ \mathbf{u} \cdot \mathbf{u} = 6 \cdot 6 + 8 \cdot 8 = 36 + 64 = 100 \] Now, we substitute these into the projection formula: \[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{14}{100} \mathbf{u} = \frac{7}{50} \mathbf{u} \] So, the orthogonal projection of \(\mathbf{v}\) onto \(\mathbf{u}\) is: \[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{7}{50} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} \frac{42}{50} \\ \frac{56}{50} \end{bmatrix} = \begin{bmatrix} 0.84 \\ 1.12 \end{bmatrix} \] Thus, the orthogonal projection
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,