Find the orthogonal projection of the vector: onto the line that consists of all the scalar multiples of the vector 8
Find the orthogonal projection of the vector: onto the line that consists of all the scalar multiples of the vector 8
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Problem Statement
Find the orthogonal projection of the vector:
\[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]
onto the line that consists of all the scalar multiples of the vector:
\[ \begin{bmatrix} 6 \\ 8 \end{bmatrix} \]
### Solution
To find the orthogonal projection of a vector **v** onto a vector **u**, we use the projection formula:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \]
Substituting the given vectors:
**v**:
\[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]
**u**:
\[ \begin{bmatrix} 6 \\ 8 \end{bmatrix} \]
First, we calculate the dot product \( \mathbf{v} \cdot \mathbf{u} \):
\[ \mathbf{v} \cdot \mathbf{u} = 1 \cdot 6 + 1 \cdot 8 = 14 \]
Next, we calculate the dot product \( \mathbf{u} \cdot \mathbf{u} \):
\[ \mathbf{u} \cdot \mathbf{u} = 6 \cdot 6 + 8 \cdot 8 = 36 + 64 = 100 \]
Now, we substitute these into the projection formula:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{14}{100} \mathbf{u} = \frac{7}{50} \mathbf{u} \]
So, the orthogonal projection of \(\mathbf{v}\) onto \(\mathbf{u}\) is:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{7}{50} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} \frac{42}{50} \\ \frac{56}{50} \end{bmatrix} = \begin{bmatrix} 0.84 \\ 1.12 \end{bmatrix} \]
Thus, the orthogonal projection](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb2c8c9d8-cb7d-4bb3-b241-ba372e4ba26e%2F5df64d12-1cd0-45d6-9b02-7646dcf0d254%2Fys5htdn_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Statement
Find the orthogonal projection of the vector:
\[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]
onto the line that consists of all the scalar multiples of the vector:
\[ \begin{bmatrix} 6 \\ 8 \end{bmatrix} \]
### Solution
To find the orthogonal projection of a vector **v** onto a vector **u**, we use the projection formula:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \]
Substituting the given vectors:
**v**:
\[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \]
**u**:
\[ \begin{bmatrix} 6 \\ 8 \end{bmatrix} \]
First, we calculate the dot product \( \mathbf{v} \cdot \mathbf{u} \):
\[ \mathbf{v} \cdot \mathbf{u} = 1 \cdot 6 + 1 \cdot 8 = 14 \]
Next, we calculate the dot product \( \mathbf{u} \cdot \mathbf{u} \):
\[ \mathbf{u} \cdot \mathbf{u} = 6 \cdot 6 + 8 \cdot 8 = 36 + 64 = 100 \]
Now, we substitute these into the projection formula:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{14}{100} \mathbf{u} = \frac{7}{50} \mathbf{u} \]
So, the orthogonal projection of \(\mathbf{v}\) onto \(\mathbf{u}\) is:
\[ \text{proj}_{\mathbf{u}} \mathbf{v} = \frac{7}{50} \begin{bmatrix} 6 \\ 8 \end{bmatrix} = \begin{bmatrix} \frac{42}{50} \\ \frac{56}{50} \end{bmatrix} = \begin{bmatrix} 0.84 \\ 1.12 \end{bmatrix} \]
Thus, the orthogonal projection
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 13 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)