Find the number of positive integer divisors of a) 36 b) 99 c) 144 d) 2-3-5-7-11-13-17-19 e) 2-32-5³-74-115-134-175-195 20!. f)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Exercise 2: Finding the Number of Positive Integer Divisors**

Determine the number of positive integer divisors for each of the following:

a) \(36\)  
b) \(99\)  
c) \(144\)  
d) \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19\)  
e) \(2^3 \cdot 3^2 \cdot 5^3 \cdot 7^4 \cdot 11^5 \cdot 13^4 \cdot 17^5 \cdot 19^5\)  
f) \(20!\)  

**Instructions:**

Use the formula for finding the number of divisors from the prime factorization of a number. If a number \( n \) can be expressed as \( n = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_k^{a_k} \), then the number of positive divisors of \( n \) is given by \((a_1+1)(a_2+1)\cdots(a_k+1)\).
Transcribed Image Text:**Exercise 2: Finding the Number of Positive Integer Divisors** Determine the number of positive integer divisors for each of the following: a) \(36\) b) \(99\) c) \(144\) d) \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19\) e) \(2^3 \cdot 3^2 \cdot 5^3 \cdot 7^4 \cdot 11^5 \cdot 13^4 \cdot 17^5 \cdot 19^5\) f) \(20!\) **Instructions:** Use the formula for finding the number of divisors from the prime factorization of a number. If a number \( n \) can be expressed as \( n = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_k^{a_k} \), then the number of positive divisors of \( n \) is given by \((a_1+1)(a_2+1)\cdots(a_k+1)\).
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,