Find the nth-derivative, f(n), of f(x) e2x+4. 1. f(n)(x) = 2. f(n)(x) = 3. f(n) (x) = 2ne2x+4 1 - n! = 1 n! 2ne2x+4 e2x+4 4. f(n) (x) = e 5. f(n)(x) = n! 2ne²x+4 6. f(n) (x) e2x+4 = n! e²x+4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
## Part 1 of 4

### Problem:

Find the \( n^{th} \)-derivative, \( f^{(n)} \), of 

\[ f(x) = e^{2x+4}. \]

### Solutions:

1. \( f^{(n)}(x) = 2^n e^{2x+4} \)
2. \( f^{(n)}(x) = \frac{1}{n!} 2^n e^{2x+4} \)
3. \( f^{(n)}(x) = \frac{1}{n!} e^{2x+4} \)
4. \( f^{(n)}(x) = e^{2x+4} \)
5. \( f^{(n)}(x) = n! 2^n e^{2x+4} \)
6. \( f^{(n)}(x) = n! e^{2x+4} \)

---

## Part 2 of 4

### Problem:

Find the degree three Taylor polynomial \( T_3 \) centered at \( x = 0 \) for \( f \) when

\[ f(x) = \ln(3 - 4x). \]

### Solutions:

1. \( T_3(x) = \ln 3 - \frac{4}{3}x - \frac{8}{9}x^2 - \frac{64}{81}x^3 \)
2. \( T_3(x) = \frac{4}{3}x - \frac{8}{9}x^2 - \frac{64}{81}x^3 \)
3. \( T_3(x) = \ln 3 + \frac{4}{3}x - \frac{8}{9}x^2 + \frac{32}{81}x^3 \)
4. \( T_3(x) = \frac{4}{3}x + \frac{8}{9}x^2 + \frac{64}{81}x^3 \)
5. \( T_3(x) = \ln 3 - \frac{4}{3}x + \frac{8}{9}x^2 - \frac{64}{81}x^3 \)
6. \( T_3(x) = \frac{4
Transcribed Image Text:## Part 1 of 4 ### Problem: Find the \( n^{th} \)-derivative, \( f^{(n)} \), of \[ f(x) = e^{2x+4}. \] ### Solutions: 1. \( f^{(n)}(x) = 2^n e^{2x+4} \) 2. \( f^{(n)}(x) = \frac{1}{n!} 2^n e^{2x+4} \) 3. \( f^{(n)}(x) = \frac{1}{n!} e^{2x+4} \) 4. \( f^{(n)}(x) = e^{2x+4} \) 5. \( f^{(n)}(x) = n! 2^n e^{2x+4} \) 6. \( f^{(n)}(x) = n! e^{2x+4} \) --- ## Part 2 of 4 ### Problem: Find the degree three Taylor polynomial \( T_3 \) centered at \( x = 0 \) for \( f \) when \[ f(x) = \ln(3 - 4x). \] ### Solutions: 1. \( T_3(x) = \ln 3 - \frac{4}{3}x - \frac{8}{9}x^2 - \frac{64}{81}x^3 \) 2. \( T_3(x) = \frac{4}{3}x - \frac{8}{9}x^2 - \frac{64}{81}x^3 \) 3. \( T_3(x) = \ln 3 + \frac{4}{3}x - \frac{8}{9}x^2 + \frac{32}{81}x^3 \) 4. \( T_3(x) = \frac{4}{3}x + \frac{8}{9}x^2 + \frac{64}{81}x^3 \) 5. \( T_3(x) = \ln 3 - \frac{4}{3}x + \frac{8}{9}x^2 - \frac{64}{81}x^3 \) 6. \( T_3(x) = \frac{4
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning