Find the missing part of the proof for mzPQR = 105° and M/PQT=27°. %3D %3D Statements Reasons 1. M PQR = 105° 1. Given %3D 2. M

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
**Find the missing part of the proof for \( m \angle PQR = 105^\circ \) and \( m \angle PQT = 27^\circ \).**

**Diagram:**
A geometric diagram shows three points labeled Q, P, and R, forming angles PQR and PQT. The lines originate from point P, with an arrow indicating direction.

**Proof:**

**Statements:**

1. \( m \angle PQR = 105^\circ \)
2. \( m \angle PQT = 27^\circ \)
3. [Missing statement]
4. \( 27^\circ + m \angle TQR = 105^\circ \)
5. \( 27^\circ + m \angle TQR - 27^\circ = 105^\circ - 27^\circ \)
6. \( m \angle TQR = 78^\circ \)

**Reasons:**

1. Given
2. Given
3. [Missing reason]
4. Substitution
5. Subtraction property of equality
6. Simplify

**Answer Choices for the Missing Parts:**

- \( m \angle PQR + m \angle PQT = m \angle TQR, \) Angle Addition Postulate
- \( m \angle PQT + m \angle PQR = m \angle TQR, \) Segment Addition Postulate
- \( m \angle PQT + m \angle TQR = m \angle PQR, \) Angle Addition Postulate
- \( m \angle PQT + m \angle TQR = m \angle PQR, \) Segment Addition Postulate

The correct choice to complete the proof statement and reason is:

- \( m \angle PQT + m \angle TQR = m \angle PQR, \) Angle Addition Postulate
Transcribed Image Text:**Find the missing part of the proof for \( m \angle PQR = 105^\circ \) and \( m \angle PQT = 27^\circ \).** **Diagram:** A geometric diagram shows three points labeled Q, P, and R, forming angles PQR and PQT. The lines originate from point P, with an arrow indicating direction. **Proof:** **Statements:** 1. \( m \angle PQR = 105^\circ \) 2. \( m \angle PQT = 27^\circ \) 3. [Missing statement] 4. \( 27^\circ + m \angle TQR = 105^\circ \) 5. \( 27^\circ + m \angle TQR - 27^\circ = 105^\circ - 27^\circ \) 6. \( m \angle TQR = 78^\circ \) **Reasons:** 1. Given 2. Given 3. [Missing reason] 4. Substitution 5. Subtraction property of equality 6. Simplify **Answer Choices for the Missing Parts:** - \( m \angle PQR + m \angle PQT = m \angle TQR, \) Angle Addition Postulate - \( m \angle PQT + m \angle PQR = m \angle TQR, \) Segment Addition Postulate - \( m \angle PQT + m \angle TQR = m \angle PQR, \) Angle Addition Postulate - \( m \angle PQT + m \angle TQR = m \angle PQR, \) Segment Addition Postulate The correct choice to complete the proof statement and reason is: - \( m \angle PQT + m \angle TQR = m \angle PQR, \) Angle Addition Postulate
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning