Find the margin of error for the given values of c, s, and n. c=0.99, s=2.1, n=17 Click the icon to view the t-distribution table. The margin of error is. (Round to one decimal place as needed.) t-Distribution Table d.f. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Level of confidence, c 0.80 One tail, a Two tails, a 0.90 0.95 0.98 0.99 0.10 0.05 0.025 0.01 0.005 0.20 0.10 0.05 0.02 0.01 d.f. 3.078 6.314 12.706 31.821 63.657 1 1.886 2.920 4.303 6.965 9.925 2 1.638 2.353 3.182 4.541 5.841 3 1.533 2.132 2.776 3.747 4.604 4 1.476 2.015 2.571 3.365 4.032 5 1.440 1.943 2.447 3.143 3.707 6 1.415 1.895 2.365 2.998 3.499 7 1.397 1.860 2.306 2.896 3.355 8 1.383 1.833 2.262 2.821 3.250 9 1.372 1.812 2.228 2.764 3.169 10 1.363 1.796 2.201 2.718 3.106 11 1.356 1.782 2.179 2.681 3.055 12 1.350 1.771 2.160 2.650 3.012 13 1.345 1.761 2.145 2.624 2.977 1.341 1.753 2.131 2.602 2.947 1.337 1.746 2.120 2.583 2.921 1.333 1.740 2.110 2.567 2.898 1.330 1.734 2.101 2.552 2.878 18 1.328 1.729 2.093 2.539 2.861 19 1.325 1.725 2.086 2.528 2.845 20 1.323 1.721 2.080 2.518 2.831 21 1.321 1.717 2.074 2.508 2.819 22 1.319 1.714 2.069 2.500 2.807 23 2.492 2.797 24 2.485 2.787 25 14 15 16 17 1.318 1.316 1.711 2.064 1.708 2.060 - X

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
### Finding the Margin of Error

To find the margin of error for the given values of \( c \), \( s \), and \( n \):

Given:
- \( c \) (confidence level) = 0.99
- \( s \) (sample standard deviation) = 2.1
- \( n \) (sample size) = 17

**Step 1:** Click the icon to view the t-distribution table.

### t-Distribution Table

The t-distribution table is a statistical table that shows the critical values of the t-distribution. The table is organized as follows:

- **Levels of confidence (\( c \))**: 0.80, 0.90, 0.95, 0.98, and 0.99.
- **Degrees of freedom (\( \text{d.f.} \))**: The number of values in the final calculation of a statistic that are free to vary.

For each combination of confidence level and degrees of freedom, the table provides the t-values to be used in statistical calculations.

Example rows include:
- For \( \text{d.f.} = 1 \):
  - \( c = 0.80 \rightarrow \text{t-value} = 3.078 \)
  - \( c = 0.99 \rightarrow \text{t-value} = 31.821 \)
- For \( \text{d.f.} = 17 \):
  - \( c = 0.80 \rightarrow \text{t-value} = 1.333 \)
  - \( c = 0.99 \rightarrow \text{t-value} = 2.898 \)

**Step 2:** With \( n = 17 \), the degrees of freedom (\( \text{d.f.} \)) are \( n - 1 = 16 \).

Looking at the row for \( \text{d.f.} = 16 \) under the column for \( c = 0.99 \):
- The t-value is 2.921.

**Step 3:** Calculate the margin of error.

\[
\text{Margin of Error} = t \times \left( \frac{s}{\sqrt{n}} \right)
\]

Substitute the values:
\[
\text{Margin of Error} = 2.921 \times \left( \frac
Transcribed Image Text:### Finding the Margin of Error To find the margin of error for the given values of \( c \), \( s \), and \( n \): Given: - \( c \) (confidence level) = 0.99 - \( s \) (sample standard deviation) = 2.1 - \( n \) (sample size) = 17 **Step 1:** Click the icon to view the t-distribution table. ### t-Distribution Table The t-distribution table is a statistical table that shows the critical values of the t-distribution. The table is organized as follows: - **Levels of confidence (\( c \))**: 0.80, 0.90, 0.95, 0.98, and 0.99. - **Degrees of freedom (\( \text{d.f.} \))**: The number of values in the final calculation of a statistic that are free to vary. For each combination of confidence level and degrees of freedom, the table provides the t-values to be used in statistical calculations. Example rows include: - For \( \text{d.f.} = 1 \): - \( c = 0.80 \rightarrow \text{t-value} = 3.078 \) - \( c = 0.99 \rightarrow \text{t-value} = 31.821 \) - For \( \text{d.f.} = 17 \): - \( c = 0.80 \rightarrow \text{t-value} = 1.333 \) - \( c = 0.99 \rightarrow \text{t-value} = 2.898 \) **Step 2:** With \( n = 17 \), the degrees of freedom (\( \text{d.f.} \)) are \( n - 1 = 16 \). Looking at the row for \( \text{d.f.} = 16 \) under the column for \( c = 0.99 \): - The t-value is 2.921. **Step 3:** Calculate the margin of error. \[ \text{Margin of Error} = t \times \left( \frac{s}{\sqrt{n}} \right) \] Substitute the values: \[ \text{Margin of Error} = 2.921 \times \left( \frac
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON