Find the Maclaurin series of f(z) = radius of convergence of each. N 1-92² and g(z) = z²e-2³ + 2z-3, and find the

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Find the Maclaurin series of \( f(z) = \frac{z^2}{1 - 9z^2} \) and \( g(z) = z^2 e^{-z^3} + 2z - 3 \), and find the radius of convergence of each.
Transcribed Image Text:Find the Maclaurin series of \( f(z) = \frac{z^2}{1 - 9z^2} \) and \( g(z) = z^2 e^{-z^3} + 2z - 3 \), and find the radius of convergence of each.
Expert Solution
Step 1: Finding the Maclaurin series for f(z)

Given the function f open parentheses z close parentheses equals fraction numerator z squared over denominator 1 minus 9 z squared end fraction. We need to find the Maclaurin series.

We can use 1 plus z plus z squared plus z cubed plus horizontal ellipsis equals fraction numerator 1 over denominator 1 minus z end fraction comma space open vertical bar z close vertical bar less than 1.

Replace 9 z squared in place of z, we get

1 plus open parentheses 9 z squared close parentheses plus open parentheses 9 z squared close parentheses squared plus open parentheses 9 z squared close parentheses cubed plus horizontal ellipsis equals fraction numerator 1 over denominator 1 minus open parentheses 9 z squared close parentheses end fraction comma space open vertical bar 9 z squared close vertical bar less than 1
1 plus 9 z squared plus 81 z to the power of 4 plus 729 z to the power of 6 plus horizontal ellipsis equals fraction numerator 1 over denominator 1 minus open parentheses 9 z squared close parentheses end fraction

Multiplying both sides by z2,

z squared plus 9 z to the power of 4 plus 81 z to the power of 6 plus 729 z to the power of 8 plus horizontal ellipsis equals fraction numerator z squared over denominator 1 minus open parentheses 9 z squared close parentheses end fraction

Thus, fraction numerator z squared over denominator 1 minus open parentheses 9 z squared close parentheses end fraction equals sum from n equals 0 to infinity of 9 to the power of n z to the power of 2 n plus 2 end exponent.

The radius of convergence is 

open vertical bar 9 z squared close vertical bar less than 1
rightwards double arrow open vertical bar z squared close vertical bar less than 1 over 9
rightwards double arrow open vertical bar z close vertical bar less than 1 third.

Thus, the radius of convergence is R=13.

steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,