Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Finding Critical Points of a Multivariable Function
#### Problem Statement:
Find the local minima, local maxima, and saddle points for the following function:
\[ f(x, y) = 6x^2 - 2x^3 + 3y^2 + 6xy \]
#### Solution Outline:
To find the local minima, maxima, and saddle points, we follow these steps:
1. **Compute the First Derivatives:**
- Find \( \frac{\partial f}{\partial x} \) and \( \frac{\partial f}{\partial y} \).
2. **Set First Derivatives to Zero:**
- Solve the equations \( \frac{\partial f}{\partial x} = 0 \) and \( \frac{\partial f}{\partial y} = 0 \) to find critical points.
3. **Compute the Second Derivatives:**
- Find \( \frac{\partial^2 f}{\partial x^2} \), \( \frac{\partial^2 f}{\partial y^2} \), and \( \frac{\partial^2 f}{\partial x \partial y} \).
4. **Apply the Second Derivative Test:**
- Use the second derivatives to create the Hessian matrix.
- Calculate the determinant of the Hessian to determine the nature of each critical point:
- If \( D > 0 \) and \( \frac{\partial^2 f}{\partial x^2} > 0 \), it's a local minimum.
- If \( D > 0 \) and \( \frac{\partial^2 f}{\partial x^2} < 0 \), it's a local maximum.
- If \( D < 0 \), it's a saddle point.
- If \( D = 0 \), the test is inconclusive.
This systematic approach will identify all salient features of the function's graph in the neighborhood of its critical points.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd825c8c7-be90-4b8b-8df3-9fe3cc770042%2F9d29329a-1a20-483a-a7dc-8fc3e1299b7c%2Fybuwgx_processed.png&w=3840&q=75)
Transcribed Image Text:### Finding Critical Points of a Multivariable Function
#### Problem Statement:
Find the local minima, local maxima, and saddle points for the following function:
\[ f(x, y) = 6x^2 - 2x^3 + 3y^2 + 6xy \]
#### Solution Outline:
To find the local minima, maxima, and saddle points, we follow these steps:
1. **Compute the First Derivatives:**
- Find \( \frac{\partial f}{\partial x} \) and \( \frac{\partial f}{\partial y} \).
2. **Set First Derivatives to Zero:**
- Solve the equations \( \frac{\partial f}{\partial x} = 0 \) and \( \frac{\partial f}{\partial y} = 0 \) to find critical points.
3. **Compute the Second Derivatives:**
- Find \( \frac{\partial^2 f}{\partial x^2} \), \( \frac{\partial^2 f}{\partial y^2} \), and \( \frac{\partial^2 f}{\partial x \partial y} \).
4. **Apply the Second Derivative Test:**
- Use the second derivatives to create the Hessian matrix.
- Calculate the determinant of the Hessian to determine the nature of each critical point:
- If \( D > 0 \) and \( \frac{\partial^2 f}{\partial x^2} > 0 \), it's a local minimum.
- If \( D > 0 \) and \( \frac{\partial^2 f}{\partial x^2} < 0 \), it's a local maximum.
- If \( D < 0 \), it's a saddle point.
- If \( D = 0 \), the test is inconclusive.
This systematic approach will identify all salient features of the function's graph in the neighborhood of its critical points.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning