Find the local maximum and minimum values and saddle point(s) of the function f(r, y) = -x4 + 4xy – 2y² + 1.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
Please answer number 12!
**Mathematics Problems for Advanced Calculus Students**

**Problem 11:**
Find an equation of the tangent plane to the surface \(\sqrt{x} + \sqrt{y} + \sqrt{z} = 4\) at the point \(P(4, 1, 1)\).

**Problem 12:**
Find the local maximum and minimum values and saddle point(s) of the function \(f(x, y) = -x^4 + 4xy - 2y^2 + 1\).

**Problem 13:**
Find the maximum value of the function \(f(x, y) = 6 - 4x^2 - y^2\) subject to the constraint \(4x + y = 5\).
Transcribed Image Text:**Mathematics Problems for Advanced Calculus Students** **Problem 11:** Find an equation of the tangent plane to the surface \(\sqrt{x} + \sqrt{y} + \sqrt{z} = 4\) at the point \(P(4, 1, 1)\). **Problem 12:** Find the local maximum and minimum values and saddle point(s) of the function \(f(x, y) = -x^4 + 4xy - 2y^2 + 1\). **Problem 13:** Find the maximum value of the function \(f(x, y) = 6 - 4x^2 - y^2\) subject to the constraint \(4x + y = 5\).
Expert Solution
Step 1

Given ,fx,y=-x4+4xy-2y2+1fx=-4x3+4yfy=4x-4yNow,-4x3+4y=0-x3+y=0              ......14x-4y=0x-y=0x=y

Step 2

Further,substitute the value of y in 1,-x3+x=0x-x2+1=0-x2+1=0 and x =0x2=1x=±1y=x=±1Critical Points: 0,0 , -1,-1 , 1,1

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Research Design Formulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,