Find the linearization L(x) of the function g(x) = /a · f(/E) at z = 100 given the following information. f(10) = 3 f(100) = -7 f'(10) = –4 f'(100) = –10 Answer: L(x) : %3D

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem: Linearization of a Function**

Find the linearization \( L(x) \) of the function \( g(x) = \sqrt{x} \cdot f(\sqrt{x}) \) at \( x = 100 \) given the following information.

\[
f(10) = 3 \quad f(100) = -7 \quad f'(10) = -4 \quad f'(100) = -10
\]

**Solution:**

To find the linearization \( L(x) \) at \( x = 100 \), we consider the formula for linearization:

\[ 
L(x) = g(100) + g'(100) \cdot (x - 100)
\]

**Calculations:**

1. **Evaluate \( g(100) \)**:
   \[
   g(100) = \sqrt{100} \cdot f(\sqrt{100}) = 10 \cdot f(10) = 10 \cdot 3 = 30
   \]

2. **Differentiate \( g(x) \) and evaluate \( g'(100) \)**:

   Using the product rule:
   \[
   g(x) = \sqrt{x} \cdot f(\sqrt{x}) \Rightarrow g'(x) = \frac{1}{2\sqrt{x}} \cdot f(\sqrt{x}) + \sqrt{x} \cdot \frac{f'(\sqrt{x})}{2\sqrt{x}}
   \]

   Simplifying:
   \[
   g'(x) = \frac{f(\sqrt{x})}{2\sqrt{x}} + \frac{\sqrt{x} f'(\sqrt{x})}{2x}
   \]

   Evaluate at \( x = 100 \):
   \[
   g'(100) = \frac{f(10)}{20} + \frac{10 \cdot f'(10)}{200}
   \]
   \[
   = \frac{3}{20} + \frac{10 \cdot (-4)}{200} = \frac{3}{20} - \frac{2}{20} = \frac{1}{20}
   \]

3. **Linearization formula**:
   \[
   L(x) = 30 + \frac{1}{20} \cdot (x - 100)
   \]

**
Transcribed Image Text:**Problem: Linearization of a Function** Find the linearization \( L(x) \) of the function \( g(x) = \sqrt{x} \cdot f(\sqrt{x}) \) at \( x = 100 \) given the following information. \[ f(10) = 3 \quad f(100) = -7 \quad f'(10) = -4 \quad f'(100) = -10 \] **Solution:** To find the linearization \( L(x) \) at \( x = 100 \), we consider the formula for linearization: \[ L(x) = g(100) + g'(100) \cdot (x - 100) \] **Calculations:** 1. **Evaluate \( g(100) \)**: \[ g(100) = \sqrt{100} \cdot f(\sqrt{100}) = 10 \cdot f(10) = 10 \cdot 3 = 30 \] 2. **Differentiate \( g(x) \) and evaluate \( g'(100) \)**: Using the product rule: \[ g(x) = \sqrt{x} \cdot f(\sqrt{x}) \Rightarrow g'(x) = \frac{1}{2\sqrt{x}} \cdot f(\sqrt{x}) + \sqrt{x} \cdot \frac{f'(\sqrt{x})}{2\sqrt{x}} \] Simplifying: \[ g'(x) = \frac{f(\sqrt{x})}{2\sqrt{x}} + \frac{\sqrt{x} f'(\sqrt{x})}{2x} \] Evaluate at \( x = 100 \): \[ g'(100) = \frac{f(10)}{20} + \frac{10 \cdot f'(10)}{200} \] \[ = \frac{3}{20} + \frac{10 \cdot (-4)}{200} = \frac{3}{20} - \frac{2}{20} = \frac{1}{20} \] 3. **Linearization formula**: \[ L(x) = 30 + \frac{1}{20} \cdot (x - 100) \] **
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning