Find the limit algebraically. lim h→0 f(1 +h)-f(1) h where f(x) = -9x² + 4x - 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
**Problem Statement:**

Find the limit algebraically.

\[
\lim_{{h \to 0}} \frac{{f(1 + h) - f(1)}}{h}
\]

where \( f(x) = -9x^2 + 4x - 4 \).

---

**Solution Explanation:**

To solve this limit problem, we need to find the derivative of \( f(x) \) at \( x = 1 \) using the definition of the derivative:

1. **Substitute \( f(x) \):**

   \( f(x) = -9x^2 + 4x - 4 \)

2. **Calculate \( f(1 + h) \):**

   - \( f(1 + h) = -9(1 + h)^2 + 4(1 + h) - 4 \)

3. **Simplify \( f(1 + h) \):**

   - Expand: \( (1 + h)^2 = 1 + 2h + h^2 \)
   - Substitute: \( -9(1 + 2h + h^2) + 4 + 4h - 4 \)
   - Simplify: \( -9 - 18h - 9h^2 + 4 + 4h - 4 \)
   - Result: \( -9h^2 - 14h - 9 \)

4. **Calculate \( f(1) \):**

   - \( f(1) = -9(1)^2 + 4(1) - 4 \)
   - Simplify: \( -9 + 4 - 4 = -9 \)

5. **Substitute into limit:**

   \[
   \lim_{{h \to 0}} \frac{{(-9 - 9h^2 - 14h) - (-9)}}{h}
   \]

6. **Simplify the expression:**

   - Numerator becomes: \( -9h^2 - 14h \)
   - Limit: \(\lim_{{h \to 0}} \frac{{-9h^2 - 14h}}{h} = \lim_{{h \to 0}} (-9h - 14) \)

7. **Evaluate the limit:**

   - As \( h \to 0 \), the
Transcribed Image Text:**Problem Statement:** Find the limit algebraically. \[ \lim_{{h \to 0}} \frac{{f(1 + h) - f(1)}}{h} \] where \( f(x) = -9x^2 + 4x - 4 \). --- **Solution Explanation:** To solve this limit problem, we need to find the derivative of \( f(x) \) at \( x = 1 \) using the definition of the derivative: 1. **Substitute \( f(x) \):** \( f(x) = -9x^2 + 4x - 4 \) 2. **Calculate \( f(1 + h) \):** - \( f(1 + h) = -9(1 + h)^2 + 4(1 + h) - 4 \) 3. **Simplify \( f(1 + h) \):** - Expand: \( (1 + h)^2 = 1 + 2h + h^2 \) - Substitute: \( -9(1 + 2h + h^2) + 4 + 4h - 4 \) - Simplify: \( -9 - 18h - 9h^2 + 4 + 4h - 4 \) - Result: \( -9h^2 - 14h - 9 \) 4. **Calculate \( f(1) \):** - \( f(1) = -9(1)^2 + 4(1) - 4 \) - Simplify: \( -9 + 4 - 4 = -9 \) 5. **Substitute into limit:** \[ \lim_{{h \to 0}} \frac{{(-9 - 9h^2 - 14h) - (-9)}}{h} \] 6. **Simplify the expression:** - Numerator becomes: \( -9h^2 - 14h \) - Limit: \(\lim_{{h \to 0}} \frac{{-9h^2 - 14h}}{h} = \lim_{{h \to 0}} (-9h - 14) \) 7. **Evaluate the limit:** - As \( h \to 0 \), the
Expert Solution
Step 1

To evaluate the limit.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning