Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
![**Problem Statement:**
Find the length of the curve defined by the parametric equations:
\[ x = \cos t \]
\[ y = \sin t \]
for the parameter interval \( 0 \leq t \leq 2\pi \).
**Explanation:**
The equations represent the parametric form of a circle with a radius of 1. The task is to calculate the circumference of this circle, given the range of the parameter \( t \) from 0 to \( 2\pi \).
**Calculation Steps:**
1. **Identify the Curve:**
- The equations describe a unit circle centered at the origin in the Cartesian plane.
2. **Use the Formula for Arc Length of a Parametric Curve:**
- The arc length \( L \) of a parametric curve from \( t = a \) to \( t = b \) is given by:
\[
L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt
\]
3. **Compute Derivatives:**
- \( \frac{dx}{dt} = -\sin t \)
- \( \frac{dy}{dt} = \cos t \)
4. **Substitute in the Arc Length Formula:**
- \( \left(\frac{dx}{dt}\right)^2 = \sin^2 t \)
- \( \left(\frac{dy}{dt}\right)^2 = \cos^2 t \)
- Therefore, \( \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \sin^2 t + \cos^2 t = 1 \)
5. **Simplify and Calculate:**
- The integral becomes:
\[
L = \int_{0}^{2\pi} \sqrt{1} \, dt = \int_{0}^{2\pi} 1 \, dt = [t]_{0}^{2\pi} = 2\pi
\]
**Conclusion:**
The length of the curve, which is the circumference of the unit circle, is \( 2\pi \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F41ceedba-33b0-406d-bf14-e3194b2b89e2%2F98c5b635-066c-47de-b731-c5691ed01aa9%2F7x8oa4d_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the length of the curve defined by the parametric equations:
\[ x = \cos t \]
\[ y = \sin t \]
for the parameter interval \( 0 \leq t \leq 2\pi \).
**Explanation:**
The equations represent the parametric form of a circle with a radius of 1. The task is to calculate the circumference of this circle, given the range of the parameter \( t \) from 0 to \( 2\pi \).
**Calculation Steps:**
1. **Identify the Curve:**
- The equations describe a unit circle centered at the origin in the Cartesian plane.
2. **Use the Formula for Arc Length of a Parametric Curve:**
- The arc length \( L \) of a parametric curve from \( t = a \) to \( t = b \) is given by:
\[
L = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt
\]
3. **Compute Derivatives:**
- \( \frac{dx}{dt} = -\sin t \)
- \( \frac{dy}{dt} = \cos t \)
4. **Substitute in the Arc Length Formula:**
- \( \left(\frac{dx}{dt}\right)^2 = \sin^2 t \)
- \( \left(\frac{dy}{dt}\right)^2 = \cos^2 t \)
- Therefore, \( \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = \sin^2 t + \cos^2 t = 1 \)
5. **Simplify and Calculate:**
- The integral becomes:
\[
L = \int_{0}^{2\pi} \sqrt{1} \, dt = \int_{0}^{2\pi} 1 \, dt = [t]_{0}^{2\pi} = 2\pi
\]
**Conclusion:**
The length of the curve, which is the circumference of the unit circle, is \( 2\pi \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning