Find the length of the curve for the interval 1 ≤ x ≤ 9 3 = √ √ √ ² ³ - 1 d dt 1 Select the correct answer. 1 484 OL= OL= OL= 5 O4 = 484 13 484 5 484 y
Find the length of the curve for the interval 1 ≤ x ≤ 9 3 = √ √ √ ² ³ - 1 d dt 1 Select the correct answer. 1 484 OL= OL= OL= 5 O4 = 484 13 484 5 484 y
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Finding the Length of a Curve
In this problem, you are required to find the length of the curve for the given interval \(1 \leq x \leq 9\). The curve is defined by the equation:
\[ y = \int_{1}^{x} \sqrt{t^3 - 1} \, dt \]
You need to find the arc length \( L \) for this curve over the specified interval.
#### Select the correct answer from the options below:
- \( \circ \quad L = \frac{1}{84} \)
- \( \circ \quad L = \frac{84}{13} \)
- \( \circ \quad L = \frac{84}{5} \)
- \( \circ \quad L = \frac{5}{84} \)
### Explanation of the Formula for Arc Length
To find the length of a curve given by \( y = \int_{a}^{x} f(t) \, dt \) from \( x = a \) to \( x = b \):
\[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \]
Here,
\[ \frac{dy}{dx} = \sqrt{x^3 - 1} \]
Therefore,
\[ L = \int_{1}^{9} \sqrt{1 + (\sqrt{x^3 - 1})^2} \, dx \]
\[ L = \int_{1}^{9} \sqrt{1 + (x^3 - 1)} \, dx \]
\[ L = \int_{1}^{9} \sqrt{x^3} \, dx \]
\[ L = \int_{1}^{9} x^{3/2} \, dx \]
After evaluating the integral, you can match the result with the correct answer from the options provided.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F24e8bfde-46ac-4815-81bc-d8be1d9c4f35%2Fdefad368-df85-40e2-9fd9-1c16a0553054%2Fgkjriwf_processed.png&w=3840&q=75)
Transcribed Image Text:### Finding the Length of a Curve
In this problem, you are required to find the length of the curve for the given interval \(1 \leq x \leq 9\). The curve is defined by the equation:
\[ y = \int_{1}^{x} \sqrt{t^3 - 1} \, dt \]
You need to find the arc length \( L \) for this curve over the specified interval.
#### Select the correct answer from the options below:
- \( \circ \quad L = \frac{1}{84} \)
- \( \circ \quad L = \frac{84}{13} \)
- \( \circ \quad L = \frac{84}{5} \)
- \( \circ \quad L = \frac{5}{84} \)
### Explanation of the Formula for Arc Length
To find the length of a curve given by \( y = \int_{a}^{x} f(t) \, dt \) from \( x = a \) to \( x = b \):
\[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \]
Here,
\[ \frac{dy}{dx} = \sqrt{x^3 - 1} \]
Therefore,
\[ L = \int_{1}^{9} \sqrt{1 + (\sqrt{x^3 - 1})^2} \, dx \]
\[ L = \int_{1}^{9} \sqrt{1 + (x^3 - 1)} \, dx \]
\[ L = \int_{1}^{9} \sqrt{x^3} \, dx \]
\[ L = \int_{1}^{9} x^{3/2} \, dx \]
After evaluating the integral, you can match the result with the correct answer from the options provided.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning