Find the Laurent series of all z 1? e² 2-1 about z 1. Why is this Laurent expansion valid for

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Problem Statement:**

Find the Laurent series of \(\frac{e^z}{z-1}\) about \(z = 1\). Why is this Laurent expansion valid for all \(z \neq 1\)?

**Solution:**

To find a Laurent series for \(\frac{e^z}{z-1}\) at \(z = 1\), we first substitute \(z = 1 + w\), so \(z - 1 = w\). The function becomes:

\[
\frac{e^{1+w}}{w} = \frac{e \cdot e^w}{w}
\]

This can be expanded using the Taylor series for \(e^w = 1 + w + \frac{w^2}{2!} + \frac{w^3}{3!} + \cdots\).

Thus, 

\[
\frac{e}{w} \left(1 + w + \frac{w^2}{2!} + \frac{w^3}{3!} + \cdots\right) = \frac{e}{w} + e + \frac{e \cdot w}{2!} + \frac{e \cdot w^2}{3!} + \cdots
\]

This expression is a valid Laurent series for all \(z \neq 1\) because it accounts for the singularity at \(z = 1\) using negative powers in the expansion. Here, the term \(\frac{e}{w}\) equals \(\frac{e}{z-1}\), demonstrating the principal part of the Laurent series, confirming validity outside the singular point.

**Conclusion:**

Hence, the Laurent series of \(\frac{e^z}{z-1}\) about \(z = 1\) is valid for all \(z \neq 1\).
Transcribed Image Text:**Problem Statement:** Find the Laurent series of \(\frac{e^z}{z-1}\) about \(z = 1\). Why is this Laurent expansion valid for all \(z \neq 1\)? **Solution:** To find a Laurent series for \(\frac{e^z}{z-1}\) at \(z = 1\), we first substitute \(z = 1 + w\), so \(z - 1 = w\). The function becomes: \[ \frac{e^{1+w}}{w} = \frac{e \cdot e^w}{w} \] This can be expanded using the Taylor series for \(e^w = 1 + w + \frac{w^2}{2!} + \frac{w^3}{3!} + \cdots\). Thus, \[ \frac{e}{w} \left(1 + w + \frac{w^2}{2!} + \frac{w^3}{3!} + \cdots\right) = \frac{e}{w} + e + \frac{e \cdot w}{2!} + \frac{e \cdot w^2}{3!} + \cdots \] This expression is a valid Laurent series for all \(z \neq 1\) because it accounts for the singularity at \(z = 1\) using negative powers in the expansion. Here, the term \(\frac{e}{w}\) equals \(\frac{e}{z-1}\), demonstrating the principal part of the Laurent series, confirming validity outside the singular point. **Conclusion:** Hence, the Laurent series of \(\frac{e^z}{z-1}\) about \(z = 1\) is valid for all \(z \neq 1\).
Expert Solution
Step 1: Explaining the question

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,