Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Finding Intervals of Increasing and Decreasing Functions
In this section, we will determine the largest open intervals where given functions are either increasing or decreasing.
#### Problem 24: Increasing
**Function:** \( f(x) = x^2 - 2x + 1 \)
To find where the function is increasing, we will:
1. Calculate the first derivative \( f'(x) \).
2. Determine where \( f'(x) > 0 \).
#### Problem 25: Increasing
**Function:** \( f(x) = \frac{1}{x^2 + 1} \)
Steps to find where the function is increasing:
1. Calculate the first derivative \( f'(x) \).
2. Identify the interval where \( f'(x) > 0 \).
#### Problem 26: Decreasing
**Function:** \( f(x) = x^3 - 4x \)
To find where the function is decreasing, follow these steps:
1. Calculate the first derivative \( f'(x) \).
2. Determine the interval where \( f'(x) < 0 \).
#### Problem 27: Decreasing
**Function:** \( f(x) = \sqrt{4 - x} \)
To determine the interval where this function is decreasing:
1. Find the first derivative \( f'(x) \).
2. Identify where \( f'(x) < 0 \).
By following these steps for each function, you will be able to pinpoint the largest open intervals where each function is changing as specified.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6b6dc6c4-2828-4529-a1c7-3495f006d86b%2Ff3792114-b218-497a-82ec-4875beb5f91c%2F2bzalfc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Finding Intervals of Increasing and Decreasing Functions
In this section, we will determine the largest open intervals where given functions are either increasing or decreasing.
#### Problem 24: Increasing
**Function:** \( f(x) = x^2 - 2x + 1 \)
To find where the function is increasing, we will:
1. Calculate the first derivative \( f'(x) \).
2. Determine where \( f'(x) > 0 \).
#### Problem 25: Increasing
**Function:** \( f(x) = \frac{1}{x^2 + 1} \)
Steps to find where the function is increasing:
1. Calculate the first derivative \( f'(x) \).
2. Identify the interval where \( f'(x) > 0 \).
#### Problem 26: Decreasing
**Function:** \( f(x) = x^3 - 4x \)
To find where the function is decreasing, follow these steps:
1. Calculate the first derivative \( f'(x) \).
2. Determine the interval where \( f'(x) < 0 \).
#### Problem 27: Decreasing
**Function:** \( f(x) = \sqrt{4 - x} \)
To determine the interval where this function is decreasing:
1. Find the first derivative \( f'(x) \).
2. Identify where \( f'(x) < 0 \).
By following these steps for each function, you will be able to pinpoint the largest open intervals where each function is changing as specified.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning