Find the Laplace transforms of the following functions: 1. cos 4x 2. e-x sin 2x Subject : DIFFERENTIAL EQUATION Topic: Laplace Transforms Below is the Table of Laplace Transforms.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Find the Laplace transforms of the following functions:

1. cos 4x

2. e-x sin 2x

Subject : DIFFERENTIAL EQUATION
Topic: Laplace Transforms

Below is the Table of Laplace Transforms.

1.
3.
5.
7.
9.
f(t)=2²¹{F(s)} F(s)=L{ƒ(t)}
1
19.
t", n=1,2,3,...
11. sin(at) at cos(at)
21.
√i
sin(at)
tsin (at)
13. cos(at)-at sin(at)
15. sin(at+i
17. sinh(at)
e sin (br)
e“sinh(br)
23. te, n=1,2,3,...
25. u(t)=u(t-c)
Heaviside Function
27. u(t)f(t-c)
29. ef(t)
31.
1(0)
Table of Laplace Transforms
33. ff(t-1)g(1) dr
35. f'(t)
37. f(t)
編號
a
s² + a²
2as
(s² + a²)²
2a³
(s² + a²)²
s(s²-a²)
(s² + a²)²
s sin (b) + a cos(b)
s² + a²
a
s²-a²
B
(s-a)² + b²
b
(s-a)²-3²
n!
(s-a)***
e-cs
S
e™ F (s)
F(s-c)
*F(u) du
2.
4.
T(1)=L²¹{F(s)}
e
6. -1,2,3,...
tº,p>-1
8. cos(at)
10. tcos(at)
12. sin(at)+ at cos(at)
20.
14. cos (at) + at sin(at)
22.
16. cos(at+b)
18.
cosh (at)
Pª
cos (bt)
cosh (br)
24. f(ct)
8(t-c)
26.
Dirac Delta Function
28.
u. (1) 8 (1)
30. "f(t), n=1,2,3,...
32. ff(v) dv
F(s) G(s)
SF (s)-f(0) 36. f(t)
34. f(t+1)=f(t)
F(s) = £{f(t)}
1
s-a
I(p+1)
5p+1
1-3-5-(2n-1)√√
2" 5"+
S
3² + a²
s²-a²
(s² + a²)²
2as²
(s² + a²)²
s(s²+3a²)
(s² + a²)²
scos (b)-asin (b)
s² + a²
S
s²-a²
s-a
(s-a)² + b²
s-a
(s-a)²-3²
+ F(-)
e{g(t+c)}
(-1)" F") (s)
F(s)
S
fef(t) dt
1-e
s²F (s)-sf (0)-f(0)
s" F (s)-5-¹ƒ(0)-5-²ƒ' (0)-sf(-²) (0)-f(¹)(0)
Transcribed Image Text:1. 3. 5. 7. 9. f(t)=2²¹{F(s)} F(s)=L{ƒ(t)} 1 19. t", n=1,2,3,... 11. sin(at) at cos(at) 21. √i sin(at) tsin (at) 13. cos(at)-at sin(at) 15. sin(at+i 17. sinh(at) e sin (br) e“sinh(br) 23. te, n=1,2,3,... 25. u(t)=u(t-c) Heaviside Function 27. u(t)f(t-c) 29. ef(t) 31. 1(0) Table of Laplace Transforms 33. ff(t-1)g(1) dr 35. f'(t) 37. f(t) 編號 a s² + a² 2as (s² + a²)² 2a³ (s² + a²)² s(s²-a²) (s² + a²)² s sin (b) + a cos(b) s² + a² a s²-a² B (s-a)² + b² b (s-a)²-3² n! (s-a)*** e-cs S e™ F (s) F(s-c) *F(u) du 2. 4. T(1)=L²¹{F(s)} e 6. -1,2,3,... tº,p>-1 8. cos(at) 10. tcos(at) 12. sin(at)+ at cos(at) 20. 14. cos (at) + at sin(at) 22. 16. cos(at+b) 18. cosh (at) Pª cos (bt) cosh (br) 24. f(ct) 8(t-c) 26. Dirac Delta Function 28. u. (1) 8 (1) 30. "f(t), n=1,2,3,... 32. ff(v) dv F(s) G(s) SF (s)-f(0) 36. f(t) 34. f(t+1)=f(t) F(s) = £{f(t)} 1 s-a I(p+1) 5p+1 1-3-5-(2n-1)√√ 2" 5"+ S 3² + a² s²-a² (s² + a²)² 2as² (s² + a²)² s(s²+3a²) (s² + a²)² scos (b)-asin (b) s² + a² S s²-a² s-a (s-a)² + b² s-a (s-a)²-3² + F(-) e{g(t+c)} (-1)" F") (s) F(s) S fef(t) dt 1-e s²F (s)-sf (0)-f(0) s" F (s)-5-¹ƒ(0)-5-²ƒ' (0)-sf(-²) (0)-f(¹)(0)
Table Notes
1. This list is not a complete listing of Laplace transforms and only contains some of
the more commonly used Laplace transforms and formulas.
2. Recall the definition of hyperbolic functions.
cosh (t)=
e²+e¹
2
sinh
3. Be careful when using "normal" trig function vs. hyperbolic functions. The only
difference in the formulas is the "+ a²" for the "normal" trig functions becomes a
**- a*** for the hyperbolic functions!
If n is a positive integer then
e¹ - e*
2
4. Formula #4 uses the Gamma function which is defined as
r(t)=*e*x²¹dx
T(n+1)=n!
The Gamma function is an extension of the normal factorial function. Here are a
couple of quick facts for the Gamma function
r(p+1)=pr (p)
p(p+1)(p+2)(p+n−1)=-
T(-1)=√T
I(p+n)
Γ(p)
Transcribed Image Text:Table Notes 1. This list is not a complete listing of Laplace transforms and only contains some of the more commonly used Laplace transforms and formulas. 2. Recall the definition of hyperbolic functions. cosh (t)= e²+e¹ 2 sinh 3. Be careful when using "normal" trig function vs. hyperbolic functions. The only difference in the formulas is the "+ a²" for the "normal" trig functions becomes a **- a*** for the hyperbolic functions! If n is a positive integer then e¹ - e* 2 4. Formula #4 uses the Gamma function which is defined as r(t)=*e*x²¹dx T(n+1)=n! The Gamma function is an extension of the normal factorial function. Here are a couple of quick facts for the Gamma function r(p+1)=pr (p) p(p+1)(p+2)(p+n−1)=- T(-1)=√T I(p+n) Γ(p)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,