Find the Laplace transform Y(s) of the solution y(t) of the initial value problem where y"-2y+2y=f(t), f(t)= y(0)=2, y'(0)=3 12 for 0
Find the Laplace transform Y(s) of the solution y(t) of the initial value problem where y"-2y+2y=f(t), f(t)= y(0)=2, y'(0)=3 12 for 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:Find the Laplace transform Y(s) of the solution y(t) of the initial value
problem
where
y"-2y+2y=f(t),
y(0)=2, y'(0)=3
12
sin(t-л)
You do not have to take the inverse Laplace transform to solve for y(t).
f(t)=
for 0≤t<n
for t≥n.

Transcribed Image Text:j(t)=L¹ {J(s)}
1
t", n = positive integer
ear
et", n = positive integer
sin (bt)
cos(bt)
ear
"sin (bt)
ear
'cos (bt)
Elementary Laplace's transforms
eat j(t)
sinh(at)
u(t-c)=
cosh(at)
1, t≥ c
0, t<c
u(t-c) j(t-c)
j(n) (t)
J(s) = L{j(t)}
113
S
1
s-a
n!
S²+1
n!
- a)"+1
s-a
s>0
b
s² + b²
S
5² + b²²
\n+1"
s> a
b
(s-a)² + b²
е
s>0
s-a
(s-a)² + b²
-Cs
S
s> a
s>0
J(s-a)
s>0
a
3²0²² s>lal
S
s²-a²
s> a
S
3²-g² s>lal
S
s> a
s>0
e-cs J(s)
s"J(s) — s"−¹ j(0) — s"−² j'(0) — ...—– j(¹−¹) (0)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

