Find the Laplace transform Y(s) of the solution y(t) of the initial value problem where y"-2y+2y=f(t), f(t)= y(0)=2, y'(0)=3 12 for 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the Laplace transform Y(s) of the solution y(t) of the initial value
problem
where
y"-2y+2y=f(t),
y(0)=2, y'(0)=3
12
sin(t-л)
You do not have to take the inverse Laplace transform to solve for y(t).
f(t)=
for 0≤t<n
for t≥n.
Transcribed Image Text:Find the Laplace transform Y(s) of the solution y(t) of the initial value problem where y"-2y+2y=f(t), y(0)=2, y'(0)=3 12 sin(t-л) You do not have to take the inverse Laplace transform to solve for y(t). f(t)= for 0≤t<n for t≥n.
j(t)=L¹ {J(s)}
1
t", n = positive integer
ear
et", n = positive integer
sin (bt)
cos(bt)
ear
"sin (bt)
ear
'cos (bt)
Elementary Laplace's transforms
eat j(t)
sinh(at)
u(t-c)=
cosh(at)
1, t≥ c
0, t<c
u(t-c) j(t-c)
j(n) (t)
J(s) = L{j(t)}
113
S
1
s-a
n!
S²+1
n!
- a)"+1
s-a
s>0
b
s² + b²
S
5² + b²²
\n+1"
s> a
b
(s-a)² + b²
е
s>0
s-a
(s-a)² + b²
-Cs
S
s> a
s>0
J(s-a)
s>0
a
3²0²² s>lal
S
s²-a²
s> a
S
3²-g² s>lal
S
s> a
s>0
e-cs J(s)
s"J(s) — s"−¹ j(0) — s"−² j'(0) — ...—– j(¹−¹) (0)
Transcribed Image Text:j(t)=L¹ {J(s)} 1 t", n = positive integer ear et", n = positive integer sin (bt) cos(bt) ear "sin (bt) ear 'cos (bt) Elementary Laplace's transforms eat j(t) sinh(at) u(t-c)= cosh(at) 1, t≥ c 0, t<c u(t-c) j(t-c) j(n) (t) J(s) = L{j(t)} 113 S 1 s-a n! S²+1 n! - a)"+1 s-a s>0 b s² + b² S 5² + b²² \n+1" s> a b (s-a)² + b² е s>0 s-a (s-a)² + b² -Cs S s> a s>0 J(s-a) s>0 a 3²0²² s>lal S s²-a² s> a S 3²-g² s>lal S s> a s>0 e-cs J(s) s"J(s) — s"−¹ j(0) — s"−² j'(0) — ...—– j(¹−¹) (0)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,