Find the laplace transform of f (t) = te2t sin 2t %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the laplace transform of
f (t) = te2t sin 2t
%3D
O F(s) = +5) 4r+8)"
2s
12
64s
(s2-45+8)
(3²–4s+8)?
O F(s) =
12
48
(s2-4s+8)
(s²–4s+8)?
(s? –4s+8)*
OF(s):
2s+8
64
%3D
(s2-4s+8)
(s²-4s+8)*
2s
12s+2
64
OF(s)% =
%3D
(s²-45+8)
(s²-4s+8)?
(s²-4s+8)
12s+2
48
OF(s):
%3D
(s²-4s+8)²
(s²-4s+8)°
12s+2
OF (s) =
48
%3D
|
(s²-4s+8)2
(s² –4s+8)
O F (s)
12
64
(s? –4s+8)
(s?-4s+8)
O F (s) =
2s
36
(s²-4s+8)
(s2-4s+8)?
(s²-4s+8)°
Transcribed Image Text:Find the laplace transform of f (t) = te2t sin 2t %3D O F(s) = +5) 4r+8)" 2s 12 64s (s2-45+8) (3²–4s+8)? O F(s) = 12 48 (s2-4s+8) (s²–4s+8)? (s? –4s+8)* OF(s): 2s+8 64 %3D (s2-4s+8) (s²-4s+8)* 2s 12s+2 64 OF(s)% = %3D (s²-45+8) (s²-4s+8)? (s²-4s+8) 12s+2 48 OF(s): %3D (s²-4s+8)² (s²-4s+8)° 12s+2 OF (s) = 48 %3D | (s²-4s+8)2 (s² –4s+8) O F (s) 12 64 (s? –4s+8) (s?-4s+8) O F (s) = 2s 36 (s²-4s+8) (s2-4s+8)? (s²-4s+8)°
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,