Find the Jacobian. a(x,y,z) = a(s,t,u) d(x,y,z) a(s,t,u)' where x = s - 3t+u,y=s+t − 5u, z = s + 3t — 5u.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

2.8

 

please solve it on paper 

### Jacobian Determinant Calculation

#### Problem Statement

Find the Jacobian, 

\[ \frac{\partial(x,y,z)}{\partial(s,t,u)} \]

where the transformation is given by the equations:

\[ x = s - 3t + u \]
\[ y = s + t - 5u \]
\[ z = s + 3t - 5u \]

#### Solution

To find the Jacobian determinant, we need to compute the partial derivatives of \(x\), \(y\), and \(z\) with respect to \(s\), \(t\), and \(u\) and arrange them in a matrix:

\[
J = \begin{vmatrix}
\frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} & \frac{\partial x}{\partial u} \\
\frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} & \frac{\partial y}{\partial u} \\
\frac{\partial z}{\partial s} & \frac{\partial z}{\partial t} & \frac{\partial z}{\partial u}
\end{vmatrix}
\]

The matrix of partial derivatives, known as the Jacobian matrix, will be evaluated as follows:

\[
\frac{\partial(x,y,z)}{\partial(s,t,u)} = 
\begin{vmatrix}
\frac{\partial(s - 3t + u)}{\partial s} & \frac{\partial(s - 3t + u)}{\partial t} & \frac{\partial(s - 3t + u)}{\partial u} \\
\frac{\partial(s + t - 5u)}{\partial s} & \frac{\partial(s + t - 5u)}{\partial t} & \frac{\partial(s + t - 5u)}{\partial u} \\
\frac{\partial(s + 3t - 5u)}{\partial s} & \frac{\partial(s + 3t - 5u)}{\partial t} & \frac{\partial(s + 3t - 5u)}{\partial u}
\end{vmatrix}
\]

Therefore, the solved determinants will fill as follows:

\[
\frac{\partial(x,y,z)}{\partial(s,t,u)} = 
\begin{vmatrix}
1
Transcribed Image Text:### Jacobian Determinant Calculation #### Problem Statement Find the Jacobian, \[ \frac{\partial(x,y,z)}{\partial(s,t,u)} \] where the transformation is given by the equations: \[ x = s - 3t + u \] \[ y = s + t - 5u \] \[ z = s + 3t - 5u \] #### Solution To find the Jacobian determinant, we need to compute the partial derivatives of \(x\), \(y\), and \(z\) with respect to \(s\), \(t\), and \(u\) and arrange them in a matrix: \[ J = \begin{vmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} & \frac{\partial x}{\partial u} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} & \frac{\partial y}{\partial u} \\ \frac{\partial z}{\partial s} & \frac{\partial z}{\partial t} & \frac{\partial z}{\partial u} \end{vmatrix} \] The matrix of partial derivatives, known as the Jacobian matrix, will be evaluated as follows: \[ \frac{\partial(x,y,z)}{\partial(s,t,u)} = \begin{vmatrix} \frac{\partial(s - 3t + u)}{\partial s} & \frac{\partial(s - 3t + u)}{\partial t} & \frac{\partial(s - 3t + u)}{\partial u} \\ \frac{\partial(s + t - 5u)}{\partial s} & \frac{\partial(s + t - 5u)}{\partial t} & \frac{\partial(s + t - 5u)}{\partial u} \\ \frac{\partial(s + 3t - 5u)}{\partial s} & \frac{\partial(s + 3t - 5u)}{\partial t} & \frac{\partial(s + 3t - 5u)}{\partial u} \end{vmatrix} \] Therefore, the solved determinants will fill as follows: \[ \frac{\partial(x,y,z)}{\partial(s,t,u)} = \begin{vmatrix} 1
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning