Find the inverse transform of the given functions: 5s+3 6s 8 F(s) (5s2+4s+1) s2+7 9.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Box the answers

Table of Laplace Transforms
f(1) = L ' {F(s)}
F (s) = L{f(t)}
f(1) = L" {F(s)}
F(s) = L{f(t)}
1
1
1
2.
at
1.
S
S - a
п!
Г(р+1)
t", n=1,2,3,...
4.
t° ,p > -1
sn+1
sP+l
1-3-5...(2n – 1) VT
6. t" , n=1,2,3,...
3
2s?
2" s"+}
a
sin (at)
8. cos(at)
7.
s? +a?
s? + a?
2as
s² – a?
i sin (at)
10. i cos (at)
9.
(s² +a* }
(s° +a*)
2
2a
2as?
11. sin (at) - at cos (at)
sin (at) + at cos (at)
12.
(s° +a*}
(s²
s(s² - a° )
(s° +a*)°
+a
s(s² + 3a*)
За?)
13. cos(at)- at sin(at)
14. cos (at)+ at sin (at)
+a
s sin (b)+a cos (b)
s cos (b)-a sin(b)
15. sin (at +
b)
16. cos (at + b)
s? + a?
s' +a
S
17.
sinh (at)
18. cosh(at)
s² – a?
s² - a?
S - a
19.
e“ sin (bt)
20.
e“ cos (bt)
2
(s-a) +b?
(s - a)* +
+b?
S - a
e" sinh (bt
21.
(ы)
e" cosh (bt)
22.
(s – a)' – b²
(s - a)' –b?
n!
23. 1"е", п %3D1,2,3,...
24. f(ct)
1
-F
n+1
(s -a)**
C
u.(1) =u (t -c)
25.
8 (t-c)
CS
26.
CS
e
Heaviside Function
S
Dirac Delta Function
27. и. (1)/ (г—с)
29. e“ f (t)
)
F(s-c)
u.(t)g (t)
t" f (t), n=1,2,3,...
e "L{g(t+c}}
(-1)" F (s)
F(s)
+1) ¿
(n)
CS
e *F (s
28. и.
C
1
31. f(1)
| F(u) du
32. f(v)dv
S
T
-st
33. f (1-t)g(T)dt
F(s)G(s)
34. f(t+T)= f(t)
e " f (t) dt
-sT
1-e
s³F(s)- sf (0)-f'(0)
sF (s)- f (0)
s"F(s)– s*\f(0)-s*-²f"(0)..-- sf(=-³ (0)– fla-) (0)
35. f'(t)
36. f"(t)
37. f (t)
3.
5.
Transcribed Image Text:Table of Laplace Transforms f(1) = L ' {F(s)} F (s) = L{f(t)} f(1) = L" {F(s)} F(s) = L{f(t)} 1 1 1 2. at 1. S S - a п! Г(р+1) t", n=1,2,3,... 4. t° ,p > -1 sn+1 sP+l 1-3-5...(2n – 1) VT 6. t" , n=1,2,3,... 3 2s? 2" s"+} a sin (at) 8. cos(at) 7. s? +a? s? + a? 2as s² – a? i sin (at) 10. i cos (at) 9. (s² +a* } (s° +a*) 2 2a 2as? 11. sin (at) - at cos (at) sin (at) + at cos (at) 12. (s° +a*} (s² s(s² - a° ) (s° +a*)° +a s(s² + 3a*) За?) 13. cos(at)- at sin(at) 14. cos (at)+ at sin (at) +a s sin (b)+a cos (b) s cos (b)-a sin(b) 15. sin (at + b) 16. cos (at + b) s? + a? s' +a S 17. sinh (at) 18. cosh(at) s² – a? s² - a? S - a 19. e“ sin (bt) 20. e“ cos (bt) 2 (s-a) +b? (s - a)* + +b? S - a e" sinh (bt 21. (ы) e" cosh (bt) 22. (s – a)' – b² (s - a)' –b? n! 23. 1"е", п %3D1,2,3,... 24. f(ct) 1 -F n+1 (s -a)** C u.(1) =u (t -c) 25. 8 (t-c) CS 26. CS e Heaviside Function S Dirac Delta Function 27. и. (1)/ (г—с) 29. e“ f (t) ) F(s-c) u.(t)g (t) t" f (t), n=1,2,3,... e "L{g(t+c}} (-1)" F (s) F(s) +1) ¿ (n) CS e *F (s 28. и. C 1 31. f(1) | F(u) du 32. f(v)dv S T -st 33. f (1-t)g(T)dt F(s)G(s) 34. f(t+T)= f(t) e " f (t) dt -sT 1-e s³F(s)- sf (0)-f'(0) sF (s)- f (0) s"F(s)– s*\f(0)-s*-²f"(0)..-- sf(=-³ (0)– fla-) (0) 35. f'(t) 36. f"(t) 37. f (t) 3. 5.
Find the inverse transform of the given functions:
5s+3
6s
F(s)
8
S
(5s²+4s+1)
s2+7
Evaluate using Laplace Transform:
tcos 3t
dt
f (t) =
e-4t
Transcribed Image Text:Find the inverse transform of the given functions: 5s+3 6s F(s) 8 S (5s²+4s+1) s2+7 Evaluate using Laplace Transform: tcos 3t dt f (t) = e-4t
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,