Find the inverse of AB if 5 -4 A-¹ and B-1 = = (AB)-¹ = -2 -4 14 -5 2 ]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Topic: Matrix Inversion**

To find the inverse of the product \( AB \), we have the given inverses:

\[
A^{-1} = 
\begin{bmatrix}
5 & -4 \\
-2 & -4
\end{bmatrix}
\]

and

\[
B^{-1} = 
\begin{bmatrix}
1 & 4 \\
-5 & 2
\end{bmatrix}
\]

The formula for finding the inverse of the product \( AB \) is:

\[
(AB)^{-1} = B^{-1}A^{-1}
\]

To compute \( (AB)^{-1} \), multiply the matrices \( B^{-1} \) and \( A^{-1} \).

**Matrix Multiplication Steps:**

1. Multiply the first row of \( B^{-1} \) by the first column of \( A^{-1} \).
2. Multiply the first row of \( B^{-1} \) by the second column of \( A^{-1} \).
3. Multiply the second row of \( B^{-1} \) by the first column of \( A^{-1} \).
4. Multiply the second row of \( B^{-1} \) by the second column of \( A^{-1} \).

**Calculation:**

1. \( (1 \cdot 5) + (4 \cdot -2) \)
2. \( (1 \cdot -4) + (4 \cdot -4) \)
3. \( (-5 \cdot 5) + (2 \cdot -2) \)
4. \( (-5 \cdot -4) + (2 \cdot -4) \)

After performing these calculations, place the results in the corresponding positions of the \( 2 \times 2 \) matrix for \( (AB)^{-1} \).

**Conclusion:**

The inverse \( (AB)^{-1} \) matrix is:

\[
(AB)^{-1} = 
\begin{bmatrix}
\text{[result 1]} & \text{[result 2]} \\
\text{[result 3]} & \text{[result 4]}
\end{bmatrix}
\]

--- 

This transcribed content can assist learners in understanding how to compute the inverse of a product of matrices step by step.
Transcribed Image Text:**Topic: Matrix Inversion** To find the inverse of the product \( AB \), we have the given inverses: \[ A^{-1} = \begin{bmatrix} 5 & -4 \\ -2 & -4 \end{bmatrix} \] and \[ B^{-1} = \begin{bmatrix} 1 & 4 \\ -5 & 2 \end{bmatrix} \] The formula for finding the inverse of the product \( AB \) is: \[ (AB)^{-1} = B^{-1}A^{-1} \] To compute \( (AB)^{-1} \), multiply the matrices \( B^{-1} \) and \( A^{-1} \). **Matrix Multiplication Steps:** 1. Multiply the first row of \( B^{-1} \) by the first column of \( A^{-1} \). 2. Multiply the first row of \( B^{-1} \) by the second column of \( A^{-1} \). 3. Multiply the second row of \( B^{-1} \) by the first column of \( A^{-1} \). 4. Multiply the second row of \( B^{-1} \) by the second column of \( A^{-1} \). **Calculation:** 1. \( (1 \cdot 5) + (4 \cdot -2) \) 2. \( (1 \cdot -4) + (4 \cdot -4) \) 3. \( (-5 \cdot 5) + (2 \cdot -2) \) 4. \( (-5 \cdot -4) + (2 \cdot -4) \) After performing these calculations, place the results in the corresponding positions of the \( 2 \times 2 \) matrix for \( (AB)^{-1} \). **Conclusion:** The inverse \( (AB)^{-1} \) matrix is: \[ (AB)^{-1} = \begin{bmatrix} \text{[result 1]} & \text{[result 2]} \\ \text{[result 3]} & \text{[result 4]} \end{bmatrix} \] --- This transcribed content can assist learners in understanding how to compute the inverse of a product of matrices step by step.
Expert Solution
Step 1: Given part

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,