Find the inverse Laplace Transform of s-7 s²+2s+5 2e-t cos(2t) + e-t sin(2t) 4e-t cos(2t) – e-t sin(2t) O 4e -t O et cos(2t) + 2e-¹ sin(2t) O 2e-t cos(2t) - e-t sin(2t) O et cos (2t) - 4e-* sin(2t)
Find the inverse Laplace Transform of s-7 s²+2s+5 2e-t cos(2t) + e-t sin(2t) 4e-t cos(2t) – e-t sin(2t) O 4e -t O et cos(2t) + 2e-¹ sin(2t) O 2e-t cos(2t) - e-t sin(2t) O et cos (2t) - 4e-* sin(2t)
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter7: Analytic Trigonometry
Section7.4: Multiple-angle Formulas
Problem 41E
Related questions
Question
100%
![**Problem Statement:**
Find the inverse Laplace Transform of
\[
\frac{s-7}{s^2+2s+5}
\]
**Answer Choices:**
1. \( 2e^{-t} \cos(2t) + e^{-t} \sin(2t) \)
2. \( 4e^{-t} \cos(2t) - e^{-t} \sin(2t) \)
3. \( e^{-t} \cos(2t) + 2e^{-t} \sin(2t) \)
4. \( 2e^{-t} \cos(2t) - e^{-t} \sin(2t) \)
5. \( e^{-t} \cos(2t) - 4e^{-t} \sin(2t) \)
**Description:**
This problem asks you to determine the inverse Laplace transform of a given rational expression. The expression provided is typically associated with second-order linear differential equations. Each answer choice represents a potential time-domain function. The goal is to apply Laplace transform techniques and match the correct inverse to one of the provided solutions.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4fb02365-efda-4f71-9185-5332218a7cc4%2Ffbd36e83-a44d-465f-b2ca-d409e4356f2a%2F7f86uo5_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the inverse Laplace Transform of
\[
\frac{s-7}{s^2+2s+5}
\]
**Answer Choices:**
1. \( 2e^{-t} \cos(2t) + e^{-t} \sin(2t) \)
2. \( 4e^{-t} \cos(2t) - e^{-t} \sin(2t) \)
3. \( e^{-t} \cos(2t) + 2e^{-t} \sin(2t) \)
4. \( 2e^{-t} \cos(2t) - e^{-t} \sin(2t) \)
5. \( e^{-t} \cos(2t) - 4e^{-t} \sin(2t) \)
**Description:**
This problem asks you to determine the inverse Laplace transform of a given rational expression. The expression provided is typically associated with second-order linear differential equations. Each answer choice represents a potential time-domain function. The goal is to apply Laplace transform techniques and match the correct inverse to one of the provided solutions.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage