Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Finding the Inverse Function
To find the inverse function of \( f(x) = -\sqrt{x + 9} \):
1. **Replace \( f(x) \) with \( y \):**
\[
y = -\sqrt{x + 9}
\]
2. **Swap \( x \) and \( y \):**
\[
x = -\sqrt{y + 9}
\]
3. **Solve for \( y \):**
\[
-x = \sqrt{y + 9}
\]
\[
x^2 = y + 9
\]
\[
y = x^2 - 9
\]
Therefore, the inverse function \( f^{-1}(x) \) is:
\[
f^{-1}(x) = x^2 - 9
\]
### Specifying the Domain
To find the domain of \( f^{-1}(x) \):
Consider the domain of the original function \( f(x) = -\sqrt{x + 9} \). The expression inside the square root, \( x + 9 \), must be non-negative, so:
\[
x + 9 \geq 0
\]
\[
x \geq -9
\]
Since the original function \( f(x) \) outputs non-positive values (the negative square root), the range of \( f(x) \) (which becomes the domain of \( f^{-1}(x) \)) is:
\[
(-\infty, 0]
\]
Thus, the domain of \( f^{-1}(x) \) using interval notation is:
\[
(-\infty, 0]
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F90d1e96e-989a-4849-aeb9-585c1e797a4d%2Ff19a91ee-5093-4985-a635-1d379975b45d%2F7ys2c3x_processed.png&w=3840&q=75)
Transcribed Image Text:### Finding the Inverse Function
To find the inverse function of \( f(x) = -\sqrt{x + 9} \):
1. **Replace \( f(x) \) with \( y \):**
\[
y = -\sqrt{x + 9}
\]
2. **Swap \( x \) and \( y \):**
\[
x = -\sqrt{y + 9}
\]
3. **Solve for \( y \):**
\[
-x = \sqrt{y + 9}
\]
\[
x^2 = y + 9
\]
\[
y = x^2 - 9
\]
Therefore, the inverse function \( f^{-1}(x) \) is:
\[
f^{-1}(x) = x^2 - 9
\]
### Specifying the Domain
To find the domain of \( f^{-1}(x) \):
Consider the domain of the original function \( f(x) = -\sqrt{x + 9} \). The expression inside the square root, \( x + 9 \), must be non-negative, so:
\[
x + 9 \geq 0
\]
\[
x \geq -9
\]
Since the original function \( f(x) \) outputs non-positive values (the negative square root), the range of \( f(x) \) (which becomes the domain of \( f^{-1}(x) \)) is:
\[
(-\infty, 0]
\]
Thus, the domain of \( f^{-1}(x) \) using interval notation is:
\[
(-\infty, 0]
\]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning