Find the inverse function of f(x) = = Specify the domain for f−¹(x) ƒ-¹(x) = x² - 9 Domain of f¹(x) using interval notation: √x + 9.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Finding the Inverse Function

To find the inverse function of \( f(x) = -\sqrt{x + 9} \):

1. **Replace \( f(x) \) with \( y \):**
   \[
   y = -\sqrt{x + 9}
   \]

2. **Swap \( x \) and \( y \):**
   \[
   x = -\sqrt{y + 9}
   \]

3. **Solve for \( y \):**
   \[
   -x = \sqrt{y + 9}
   \]
   \[
   x^2 = y + 9
   \]
   \[
   y = x^2 - 9
   \]

Therefore, the inverse function \( f^{-1}(x) \) is:
\[
f^{-1}(x) = x^2 - 9
\]

### Specifying the Domain

To find the domain of \( f^{-1}(x) \):

Consider the domain of the original function \( f(x) = -\sqrt{x + 9} \). The expression inside the square root, \( x + 9 \), must be non-negative, so:
\[
x + 9 \geq 0
\]
\[
x \geq -9
\]

Since the original function \( f(x) \) outputs non-positive values (the negative square root), the range of \( f(x) \) (which becomes the domain of \( f^{-1}(x) \)) is:
\[
(-\infty, 0]
\]

Thus, the domain of \( f^{-1}(x) \) using interval notation is:
\[
(-\infty, 0]
\]
Transcribed Image Text:### Finding the Inverse Function To find the inverse function of \( f(x) = -\sqrt{x + 9} \): 1. **Replace \( f(x) \) with \( y \):** \[ y = -\sqrt{x + 9} \] 2. **Swap \( x \) and \( y \):** \[ x = -\sqrt{y + 9} \] 3. **Solve for \( y \):** \[ -x = \sqrt{y + 9} \] \[ x^2 = y + 9 \] \[ y = x^2 - 9 \] Therefore, the inverse function \( f^{-1}(x) \) is: \[ f^{-1}(x) = x^2 - 9 \] ### Specifying the Domain To find the domain of \( f^{-1}(x) \): Consider the domain of the original function \( f(x) = -\sqrt{x + 9} \). The expression inside the square root, \( x + 9 \), must be non-negative, so: \[ x + 9 \geq 0 \] \[ x \geq -9 \] Since the original function \( f(x) \) outputs non-positive values (the negative square root), the range of \( f(x) \) (which becomes the domain of \( f^{-1}(x) \)) is: \[ (-\infty, 0] \] Thus, the domain of \( f^{-1}(x) \) using interval notation is: \[ (-\infty, 0] \]
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning