Find the indicated limits, noting L'Hôpital's Rule wherever it is used. lim (1-ª)* (constant a)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Finding the Limit Using L'Hôpital's Rule**

**Problem Statement:**

Find the indicated limits, noting L'Hôpital's Rule wherever it is used.

\[ \lim_ {x \to \infty} \left( 1 - \frac{a}{x} \right)^x \text{ (constant \( a \))} \]

**Explanation:**

This limit problem requires applying advanced calculus techniques. The expression inside the limit can be simplified with the use of exponential functions and natural logarithms. In particular, recognizing the indeterminate form \((1 + \text{small number})^{\text{large number}}\), we can use the exponential function with Euler's number \( e \), and sometimes L'Hôpital's Rule is involved when encountering indeterminate forms like \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \).

1. **Transform the Exponential Form:**

Start by taking the natural logarithm of the given function to handle the exponent:
\[ y = \left( 1 - \frac{a}{x} \right)^x \]
\[ \ln y = \ln \left( \left( 1 - \frac{a}{x} \right)^x \right) \]
\[ \ln y = x \ln \left( 1 - \frac{a}{x} \right) \]

2. **Evaluate the Limit Inside the Logarithm:**

Now consider the limit of the exponent expression:
\[ \lim_{x \to \infty} x \ln \left( 1 - \frac{a}{x} \right) \]

To evaluate this limit, notice the form \( x \ln \left( 1 - \frac{a}{x} \right) \) becomes \( \infty \cdot (-0) \), an indeterminate form that can be approached using tools such as series expansion or L'Hôpital's Rule.

3. **Using a Series Expansion:**

For large \( x \):
\[ \ln \left( 1 - \frac{a}{x} \right) \approx -\frac{a}{x} \text{ (using the first term of the Taylor series expansion around 0)} \]

Thus:
\[ x \ln \left( 1 - \frac{a}{x} \right) \approx x \left( -
Transcribed Image Text:**Finding the Limit Using L'Hôpital's Rule** **Problem Statement:** Find the indicated limits, noting L'Hôpital's Rule wherever it is used. \[ \lim_ {x \to \infty} \left( 1 - \frac{a}{x} \right)^x \text{ (constant \( a \))} \] **Explanation:** This limit problem requires applying advanced calculus techniques. The expression inside the limit can be simplified with the use of exponential functions and natural logarithms. In particular, recognizing the indeterminate form \((1 + \text{small number})^{\text{large number}}\), we can use the exponential function with Euler's number \( e \), and sometimes L'Hôpital's Rule is involved when encountering indeterminate forms like \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \). 1. **Transform the Exponential Form:** Start by taking the natural logarithm of the given function to handle the exponent: \[ y = \left( 1 - \frac{a}{x} \right)^x \] \[ \ln y = \ln \left( \left( 1 - \frac{a}{x} \right)^x \right) \] \[ \ln y = x \ln \left( 1 - \frac{a}{x} \right) \] 2. **Evaluate the Limit Inside the Logarithm:** Now consider the limit of the exponent expression: \[ \lim_{x \to \infty} x \ln \left( 1 - \frac{a}{x} \right) \] To evaluate this limit, notice the form \( x \ln \left( 1 - \frac{a}{x} \right) \) becomes \( \infty \cdot (-0) \), an indeterminate form that can be approached using tools such as series expansion or L'Hôpital's Rule. 3. **Using a Series Expansion:** For large \( x \): \[ \ln \left( 1 - \frac{a}{x} \right) \approx -\frac{a}{x} \text{ (using the first term of the Taylor series expansion around 0)} \] Thus: \[ x \ln \left( 1 - \frac{a}{x} \right) \approx x \left( -
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning