Find the indefinite integral. [(sec e tan ()i + (tan t)3 + (2 sin t cos t)k] dt Integrate the given integral with respect to t on a component-by-component basis. n/6 [" (sec t tan t)i + (tan t)j + (2 sin t cos t)k dt (sec e tan t) dt )i +/" (tan t) dt cos t) dt )k sin t cos - [ n/6, i+ In R/6

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Vector Integral Calculation

#### Problem Statement
Find the indefinite integral:
\[
\int_0^{\pi/6} \left((\sec t \tan t) \mathbf{i} + (\tan t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k}\right) \, dt
\]

#### Step-by-step Solution
Integrate the given integral with respect to \( t \) on a component-by-component basis:

\[
\int_0^{\pi/6} \left((\sec t \tan t) \mathbf{i} + (\tan t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k}\right) \, dt
\]

This can be split into:

\[
= \left( \int_0^{\pi/6} (\sec t \tan t) \, dt \right) \mathbf{i} + \left( \int_0^{\pi/6} (\tan t) \, dt \right) \mathbf{j} + \left( \int_0^{\pi/6} (2 \sin t \cos t) \, dt \right) \mathbf{k}
\]

\[
= \left[ \, \right]_0^{\pi/6} \mathbf{i} + \left[ \ln \, \right]_0^{\pi/6} \mathbf{j} + \left[ \, \right]_0^{\pi/6} \mathbf{k}
\]

Here, each component is integrated separately over the interval \([0, \pi/6]\).

### Explanation of Components

1. **First Component (\(\mathbf{i}\)):**
   - Integral of \(\sec t \tan t\) from \(0\) to \(\pi/6\).
   
2. **Second Component (\(\mathbf{j}\)):**
   - Integral of \(\tan t\) from \(0\) to \(\pi/6\).
   - Results in a logarithmic expression \(\ln\).

3. **Third Component (\(\mathbf{k}\)):**
   - Integral of \(2 \sin t \cos t\) from \(0\) to \(\pi/6\).
   - This simplifies through trigonometric identities.

The solution involves performing the definite integrations and substituting within the brackets
Transcribed Image Text:### Vector Integral Calculation #### Problem Statement Find the indefinite integral: \[ \int_0^{\pi/6} \left((\sec t \tan t) \mathbf{i} + (\tan t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k}\right) \, dt \] #### Step-by-step Solution Integrate the given integral with respect to \( t \) on a component-by-component basis: \[ \int_0^{\pi/6} \left((\sec t \tan t) \mathbf{i} + (\tan t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k}\right) \, dt \] This can be split into: \[ = \left( \int_0^{\pi/6} (\sec t \tan t) \, dt \right) \mathbf{i} + \left( \int_0^{\pi/6} (\tan t) \, dt \right) \mathbf{j} + \left( \int_0^{\pi/6} (2 \sin t \cos t) \, dt \right) \mathbf{k} \] \[ = \left[ \, \right]_0^{\pi/6} \mathbf{i} + \left[ \ln \, \right]_0^{\pi/6} \mathbf{j} + \left[ \, \right]_0^{\pi/6} \mathbf{k} \] Here, each component is integrated separately over the interval \([0, \pi/6]\). ### Explanation of Components 1. **First Component (\(\mathbf{i}\)):** - Integral of \(\sec t \tan t\) from \(0\) to \(\pi/6\). 2. **Second Component (\(\mathbf{j}\)):** - Integral of \(\tan t\) from \(0\) to \(\pi/6\). - Results in a logarithmic expression \(\ln\). 3. **Third Component (\(\mathbf{k}\)):** - Integral of \(2 \sin t \cos t\) from \(0\) to \(\pi/6\). - This simplifies through trigonometric identities. The solution involves performing the definite integrations and substituting within the brackets
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning