Find the general solution of y"-3y'=0 A) y=c₁x+c₂e¹ C)y=q₁ +₂³ B) y=ce+c₂e² D) y=c₁ +ce

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Q 7 please
1
2
3
4
5
6
7
Which of the following is a second-order linear nonhomogenous ODE?
A) sin(x)y" + y = 0 B) sin(x)y"+y+3=0 C) sin(x) (y)² + y = 0 D) sin(x)
4
Find the general solution of y'+-y=4x ? A) y=x² + B) y=x²+0) y = x² + D).
Find the values for the constants a, b in which the ODE (axy-by²) dx-(x² + 4xy) dy=0 is exact?
X
A) a = 3,b= -2
B) a=-3,b=-2
C) a=3,b=-4
D) a=0,b=-2
By using a suitable substitution, the Bernoulli ODE y'+ xy = y, becomes a linear ODE of the form:
A) u'-4xu=-4 B) u'-3x=-3u
C) u'+3xu=3
D) u'- 3xu = -3
Find the exact solution for x'y'-y=0, y(1)=1
A) y=e² +e B) y=e¹-² C)y=e=²+e_D)y=e¹
By using a suitable substitution, the non-separable ODE xy'=x+y, is reduces to a separable ODE of the
1
A)u'=-
B) u'=x
C) xu'+2u=0 D) u'=-x
Find the general solution of y"-3y'=0
A) y=q₁x+c₂₁e¹
C)y=+₂e³x
B) y=ce ¹ +ce²
D) y=c₁ +₂e
d
e value(s) fork in which the general solution of 3y"+y+ky=0 is of the form ce +exe^
c₂,2 are real constants}
A) k = 12
B) k=0
C) k = 1
D) k = =
Find an ODE whose basis of the general solution the functions y, = sin 3x, y₂ = cos 3x
A) y"-9y=0
B) y"+9y=0
C) y"-3y=0
10 The integrating factor of the non-exact D.E. (ex+y+ye) dx + (xey-1) dy = 0
D) y"+3y=0
(a) e->
(b)-y
(c) y ³
11 the general solution for the second order ODE y" + 11y' + 24y = 0
-8x
3x
a) y = C₁ ex+C₂ e³x
-8x
-3x
(b) y = C₁ e +C₂ e (c) y = C₁ e +C₂ e³¹ (d) y =
12 the integrating factor for the first order ODE y' = 3+2y is
(a) e²
(b) e²
e-2x
(d) e²x
(c) e
(d)
Transcribed Image Text:1 2 3 4 5 6 7 Which of the following is a second-order linear nonhomogenous ODE? A) sin(x)y" + y = 0 B) sin(x)y"+y+3=0 C) sin(x) (y)² + y = 0 D) sin(x) 4 Find the general solution of y'+-y=4x ? A) y=x² + B) y=x²+0) y = x² + D). Find the values for the constants a, b in which the ODE (axy-by²) dx-(x² + 4xy) dy=0 is exact? X A) a = 3,b= -2 B) a=-3,b=-2 C) a=3,b=-4 D) a=0,b=-2 By using a suitable substitution, the Bernoulli ODE y'+ xy = y, becomes a linear ODE of the form: A) u'-4xu=-4 B) u'-3x=-3u C) u'+3xu=3 D) u'- 3xu = -3 Find the exact solution for x'y'-y=0, y(1)=1 A) y=e² +e B) y=e¹-² C)y=e=²+e_D)y=e¹ By using a suitable substitution, the non-separable ODE xy'=x+y, is reduces to a separable ODE of the 1 A)u'=- B) u'=x C) xu'+2u=0 D) u'=-x Find the general solution of y"-3y'=0 A) y=q₁x+c₂₁e¹ C)y=+₂e³x B) y=ce ¹ +ce² D) y=c₁ +₂e d e value(s) fork in which the general solution of 3y"+y+ky=0 is of the form ce +exe^ c₂,2 are real constants} A) k = 12 B) k=0 C) k = 1 D) k = = Find an ODE whose basis of the general solution the functions y, = sin 3x, y₂ = cos 3x A) y"-9y=0 B) y"+9y=0 C) y"-3y=0 10 The integrating factor of the non-exact D.E. (ex+y+ye) dx + (xey-1) dy = 0 D) y"+3y=0 (a) e-> (b)-y (c) y ³ 11 the general solution for the second order ODE y" + 11y' + 24y = 0 -8x 3x a) y = C₁ ex+C₂ e³x -8x -3x (b) y = C₁ e +C₂ e (c) y = C₁ e +C₂ e³¹ (d) y = 12 the integrating factor for the first order ODE y' = 3+2y is (a) e² (b) e² e-2x (d) e²x (c) e (d)
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,