Find the general solution of the given system. dx = 4x + y dt dy = -2x + 2y dt (x(t), y(t)) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
To solve the given system of differential equations, follow these steps:

1. **System of Differential Equations:**
   \[
   \begin{align}
   \frac{dx}{dt} &= 4x + y \\
   \frac{dy}{dt} &= -2x + 2y
   \end{align}
   \]

2. **General Solution:**
   We aim to find \((x(t), y(t))\), which represents the solution as functions of \(t\).

3. **Matrix Representation:**
   The system can be written in matrix form:
   \[
   \frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}
   \]
   Let \(\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}\), then:
   \[
   \frac{d\mathbf{X}}{dt} = A\mathbf{X} \quad \text{where} \quad A = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix}
   \]

4. **Eigenvectors and Eigenvalues:**
   To find the general solution, we find the eigenvalues \(\lambda\) and eigenvectors \(\mathbf{v}\) of matrix \(A\).

   \[
   \det(A - \lambda I) = 0
   \]
   \[
   \det \begin{pmatrix} 4 - \lambda & 1 \\ -2 & 2 - \lambda \end{pmatrix} = (4 - \lambda)(2 - \lambda) - (-2)(1) = 0
   \]
   \[
   (4 - \lambda)(2 - \lambda) + 2 = \lambda^2 - 6\lambda + 10 = 0
   \]
   Solve the quadratic equation for \(\lambda\).

5. **Using the Eigenvalues and Eigenvectors:**
   Assume eigenvalues are \(\lambda_1\) and \(\lambda_2\) with corresponding eigenvectors \(\mathbf{v}_1\) and \(\mathbf{
Transcribed Image Text:To solve the given system of differential equations, follow these steps: 1. **System of Differential Equations:** \[ \begin{align} \frac{dx}{dt} &= 4x + y \\ \frac{dy}{dt} &= -2x + 2y \end{align} \] 2. **General Solution:** We aim to find \((x(t), y(t))\), which represents the solution as functions of \(t\). 3. **Matrix Representation:** The system can be written in matrix form: \[ \frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \] Let \(\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}\), then: \[ \frac{d\mathbf{X}}{dt} = A\mathbf{X} \quad \text{where} \quad A = \begin{pmatrix} 4 & 1 \\ -2 & 2 \end{pmatrix} \] 4. **Eigenvectors and Eigenvalues:** To find the general solution, we find the eigenvalues \(\lambda\) and eigenvectors \(\mathbf{v}\) of matrix \(A\). \[ \det(A - \lambda I) = 0 \] \[ \det \begin{pmatrix} 4 - \lambda & 1 \\ -2 & 2 - \lambda \end{pmatrix} = (4 - \lambda)(2 - \lambda) - (-2)(1) = 0 \] \[ (4 - \lambda)(2 - \lambda) + 2 = \lambda^2 - 6\lambda + 10 = 0 \] Solve the quadratic equation for \(\lambda\). 5. **Using the Eigenvalues and Eigenvectors:** Assume eigenvalues are \(\lambda_1\) and \(\lambda_2\) with corresponding eigenvectors \(\mathbf{v}_1\) and \(\mathbf{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,