Find the general solution of the given differential equation using variation of parameters. I y" +9y = 9sec²3t, 0 < t <- 6 O y = c₁ cos 3t + c₂ sin 3t - sec 3t + In [sec 3t + tan 3t| y = c₁ cos 3t + c₂ sin 3t - sec 3t+ sin (3t) In [sec 3t + tan 3t| O y = c₁ cos 3t + c₂ sin 3t - cos 3t+ sin (3t) In [sec 3t + tan 3t| O y = c₁ cos 3t + c₂ sin 3t - 1 + sin (3t) In [sec 3t + tan 3t|

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

8. hi what iss the best answer here?

Find the general solution of the given differential equation using variation of parameters.
π
y" +9y = 9sec²3t, 0 < t <-
6
O y = c₁ cos 3t + c₂ sin 3t - sec 3t+ In [sec 3t + tan 3t|
y = c₁ cos 3t + c2 sin 31 sec 3t+ sin (3t) In [sec 3t + tan 3t|
c₁ cos 3t+c₂ sin 3t - cos 3t+ sin (3t) In [sec 3t + tan 3t|
O y = c₁ cos 3t + c₂ sin 3t - 1 + sin (3t) In [sec 3t + tan 3t|
O y =
-
Transcribed Image Text:Find the general solution of the given differential equation using variation of parameters. π y" +9y = 9sec²3t, 0 < t <- 6 O y = c₁ cos 3t + c₂ sin 3t - sec 3t+ In [sec 3t + tan 3t| y = c₁ cos 3t + c2 sin 31 sec 3t+ sin (3t) In [sec 3t + tan 3t| c₁ cos 3t+c₂ sin 3t - cos 3t+ sin (3t) In [sec 3t + tan 3t| O y = c₁ cos 3t + c₂ sin 3t - 1 + sin (3t) In [sec 3t + tan 3t| O y = -
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,