Find the general solution of the following systems of differential equation A) 80-180 X' (t) = X (t)
Find the general solution of the following systems of differential equation A) 80-180 X' (t) = X (t)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem Statement:**
Find the general solution of the following systems of differential equations:
**A)**
\[
\vec{X}'(t) = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} \vec{X}(t)
\]
**B)**
\[
\vec{X}'(t) = \begin{bmatrix} -3 & 2 \\ -1 & -1 \end{bmatrix} \vec{X}(t)
\]
**Explanation:**
Each system of differential equations involves finding the general solution for a vector function \(\vec{X}(t)\). The systems are expressed in matrix form, where \(\vec{X}'(t)\) represents the derivative of the vector \(\vec{X}(t)\) with respect to time \(t\). Each matrix determines the coefficients of the system and influences the behavior of the solution.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3ba71b9f-6645-4b82-be5d-cda1c9d5ec57%2F967acb9d-7f35-4f2d-85c6-45ec6b2ef8fe%2Fhbp3si_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the general solution of the following systems of differential equations:
**A)**
\[
\vec{X}'(t) = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix} \vec{X}(t)
\]
**B)**
\[
\vec{X}'(t) = \begin{bmatrix} -3 & 2 \\ -1 & -1 \end{bmatrix} \vec{X}(t)
\]
**Explanation:**
Each system of differential equations involves finding the general solution for a vector function \(\vec{X}(t)\). The systems are expressed in matrix form, where \(\vec{X}'(t)\) represents the derivative of the vector \(\vec{X}(t)\) with respect to time \(t\). Each matrix determines the coefficients of the system and influences the behavior of the solution.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)