Find the general solution of the differential equation y(4) + 12y" – 64y = 16(2 +5t)e2t. - %3D Select one: O none of the given answers is true 2t y = Ciet + c2e +tet – t'e2t + c3 sin(4t) + C4 cos(4t) 2t O y= cet + c2e -tet + t'et + c3 sin(4t) + C4 cos(4t) 2t O y = cet + c2e 2t te2t + c3 sin(4t) + C4 cos(4t) -tet 2t O y = cet + C2e +tet +t'et + c3 sin(4t) + C4 cos(4t)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
i need the answer quickly
Find the general solution of the differential equation y(4) + 12y" - 64y = 16(2+ 5t)et.
Select one:
none of the given answers is true
y = ciea + c2e
-2t
+ c3 sin(4t) + C4 cos(4t)
+tet
y = cet + c2e
2t
+ c3 sin(4t) + C4 cos(4t)
-tet
+t'et
y = ce“ + c2e
t'e2t
2t
+ c3 sin(4t) + C4 cos(4t)
-tet
y = cet + c2e
-2t
+ Cz sin(4t) + C4 cos(4t)
+tet
+t'e2t
Transcribed Image Text:Find the general solution of the differential equation y(4) + 12y" - 64y = 16(2+ 5t)et. Select one: none of the given answers is true y = ciea + c2e -2t + c3 sin(4t) + C4 cos(4t) +tet y = cet + c2e 2t + c3 sin(4t) + C4 cos(4t) -tet +t'et y = ce“ + c2e t'e2t 2t + c3 sin(4t) + C4 cos(4t) -tet y = cet + c2e -2t + Cz sin(4t) + C4 cos(4t) +tet +t'e2t
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,