Find the expected value of the random variable. X 2 3 4 5 P(x) 0.1 0.3 0.1 0.5

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Find the Expected Value of the Random Variable**

The table below provides the values of a discrete random variable \( x \) and their corresponding probabilities \( P(x) \).

| \( x \)   | 2  | 3  | 4  | 5  |
|-----------|----|----|----|----|
| \( P(x) \) | 0.1 | 0.3 | 0.1 | 0.5 |

**What is the expected value?**  
(Type an integer or a decimal.)

---

To find the expected value \( E(x) \), use the formula:  
\[ E(x) = \sum [x \cdot P(x)] \]

1. Calculate for each value of \( x \):
   - \( 2 \cdot 0.1 = 0.2 \)
   - \( 3 \cdot 0.3 = 0.9 \)
   - \( 4 \cdot 0.1 = 0.4 \)
   - \( 5 \cdot 0.5 = 2.5 \)

2. Sum these results:
   - \( 0.2 + 0.9 + 0.4 + 2.5 = 4.0 \)

**Expected Value: 4.0**
Transcribed Image Text:**Find the Expected Value of the Random Variable** The table below provides the values of a discrete random variable \( x \) and their corresponding probabilities \( P(x) \). | \( x \) | 2 | 3 | 4 | 5 | |-----------|----|----|----|----| | \( P(x) \) | 0.1 | 0.3 | 0.1 | 0.5 | **What is the expected value?** (Type an integer or a decimal.) --- To find the expected value \( E(x) \), use the formula: \[ E(x) = \sum [x \cdot P(x)] \] 1. Calculate for each value of \( x \): - \( 2 \cdot 0.1 = 0.2 \) - \( 3 \cdot 0.3 = 0.9 \) - \( 4 \cdot 0.1 = 0.4 \) - \( 5 \cdot 0.5 = 2.5 \) 2. Sum these results: - \( 0.2 + 0.9 + 0.4 + 2.5 = 4.0 \) **Expected Value: 4.0**
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,