Find the exact value of the given expression. tan(cos-¹(²)) 2 3 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

Please give me a clean step-by-step answer. Thank you!

**Problem:**

Find the exact value of the given expression.

\[ \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{3}{4}\right)\right) \]

**Solution:**

To find the exact value of the expression, we first need to determine the angle \( \theta \) such that \( \cos(\theta) = \frac{3}{4} \). This angle is \(\cos^{-1}\left(\frac{3}{4}\right)\).

Then we apply the half-angle identity for tangent:

\[
\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}}
\]

In this case, \( \cos(\theta) = \frac{3}{4} \), so:

\[
\tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \frac{3}{4}}{1 + \frac{3}{4}}}
\]

\[
= \pm \sqrt{\frac{\frac{1}{4}}{\frac{7}{4}}}
\]

\[
= \pm \sqrt{\frac{1}{7}}
\]

Thus, the exact value of the expression is:

\[
\tan\left(\frac{1}{2} \cos^{-1}\left(\frac{3}{4}\right)\right) = \pm \sqrt{\frac{1}{7}}
\]

**Note:**

Since the context of the problem may indicate a specific quadrant, choose the appropriate sign (+ or -) based on the interval in which \(\frac{\theta}{2}\) lies.
Transcribed Image Text:**Problem:** Find the exact value of the given expression. \[ \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{3}{4}\right)\right) \] **Solution:** To find the exact value of the expression, we first need to determine the angle \( \theta \) such that \( \cos(\theta) = \frac{3}{4} \). This angle is \(\cos^{-1}\left(\frac{3}{4}\right)\). Then we apply the half-angle identity for tangent: \[ \tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} \] In this case, \( \cos(\theta) = \frac{3}{4} \), so: \[ \tan\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \frac{3}{4}}{1 + \frac{3}{4}}} \] \[ = \pm \sqrt{\frac{\frac{1}{4}}{\frac{7}{4}}} \] \[ = \pm \sqrt{\frac{1}{7}} \] Thus, the exact value of the expression is: \[ \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{3}{4}\right)\right) = \pm \sqrt{\frac{1}{7}} \] **Note:** Since the context of the problem may indicate a specific quadrant, choose the appropriate sign (+ or -) based on the interval in which \(\frac{\theta}{2}\) lies.
**Problem Statement:**

Find the exact value of the given expression.

\[
\tan\left(\frac{1}{2} \cos^{-1}\left(\frac{3}{4}\right)\right)
\]

**Description:**

This expression involves finding the tangent of half an angle, where the angle itself is determined by the inverse cosine (arccos) of \(\frac{3}{4}\). To solve this, you will first find the angle \(\theta\) such that \(\cos(\theta) = \frac{3}{4}\). Then, you calculate the tangent of \(\frac{\theta}{2}\).

**Instructions:**

1. Determine \(\theta\) such that \(\cos(\theta) = \frac{3}{4}\).
2. Use the identity for \(\tan\left(\frac{\theta}{2}\right)\):

   \[
   \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}}
   \]

3. Substitute \(\cos(\theta) = \frac{3}{4}\) into the identity and simplify.
4. Calculate the exact value.
Transcribed Image Text:**Problem Statement:** Find the exact value of the given expression. \[ \tan\left(\frac{1}{2} \cos^{-1}\left(\frac{3}{4}\right)\right) \] **Description:** This expression involves finding the tangent of half an angle, where the angle itself is determined by the inverse cosine (arccos) of \(\frac{3}{4}\). To solve this, you will first find the angle \(\theta\) such that \(\cos(\theta) = \frac{3}{4}\). Then, you calculate the tangent of \(\frac{\theta}{2}\). **Instructions:** 1. Determine \(\theta\) such that \(\cos(\theta) = \frac{3}{4}\). 2. Use the identity for \(\tan\left(\frac{\theta}{2}\right)\): \[ \tan\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 - \cos(\theta)}{1 + \cos(\theta)}} \] 3. Substitute \(\cos(\theta) = \frac{3}{4}\) into the identity and simplify. 4. Calculate the exact value.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning