Find the exact value of the following expression. 5л 12 sin Rewrite the expression using a sum or difference formula. Choose the correct answer below. O A. sin OB. sin OC. sin OD. sin 5л 12 5x 12 5л 12 5 п 12 = sin = sin = sin = sin - T 4 5x 4 T + 4 + 5x 4 6 6 - 5л 6 5x is = sin 6 = sin - T 4 = COS 尺寸 4 = COS COS 5 4 COS 5п 4 π 6 COS R6 + cos π 5 п 6 - Cos COS 5 п 6 T 4 sin sin #14 sin + sin H|6 5x 5п sin 4 6 6 5л 5п sin 4 5t The exact value of sin 12 (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) mis ques

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Mathematics: Trigonometry**

---

**Find the exact value of the following expression.**

\[ \sin \frac{5\pi}{12} \]

---

**Rewrite the expression using a sum or difference formula. Choose the correct answer below.**

\[ \sin \frac{5\pi}{12} = \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) = \sin \frac{\pi}{4} \cos \frac{\pi}{6} + \cos \frac{\pi}{4} \sin \frac{\pi}{6} \]

- **Option A:**

\[ \sin \frac{5\pi}{12} = \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) = \sin \frac{\pi}{4} \cos \frac{\pi}{6} + \cos \frac{\pi}{4} \sin \frac{\pi}{6} \]

- **Option B:**

\[ \sin \frac{5\pi}{12} = \sin \left( \frac{5\pi}{4} - \frac{5\pi}{6} \right) = \cos \frac{5\pi}{4} \cos \frac{5\pi}{6} - \sin \frac{5\pi}{4} \sin \frac{5\pi}{6} \]

- **Option C:**

\[ \sin \frac{5\pi}{12} = \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) = \sin \frac{\pi}{4} \cos \frac{\pi}{6} - \cos \frac{\pi}{4} \sin \frac{\pi}{6} \]

- **Option D:**

\[ \sin \frac{5\pi}{12} = \sin \left( \frac{5\pi}{4} - \frac{5\pi}{6} \right) = \cos \frac{5\pi}{4} \cos \frac{5\pi}{6} + \sin \frac{5\pi}{4} \sin \frac{5\pi}{6} \]


---

**The exact value of** \(\sin \frac{5\pi}{12
Transcribed Image Text:**Mathematics: Trigonometry** --- **Find the exact value of the following expression.** \[ \sin \frac{5\pi}{12} \] --- **Rewrite the expression using a sum or difference formula. Choose the correct answer below.** \[ \sin \frac{5\pi}{12} = \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) = \sin \frac{\pi}{4} \cos \frac{\pi}{6} + \cos \frac{\pi}{4} \sin \frac{\pi}{6} \] - **Option A:** \[ \sin \frac{5\pi}{12} = \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) = \sin \frac{\pi}{4} \cos \frac{\pi}{6} + \cos \frac{\pi}{4} \sin \frac{\pi}{6} \] - **Option B:** \[ \sin \frac{5\pi}{12} = \sin \left( \frac{5\pi}{4} - \frac{5\pi}{6} \right) = \cos \frac{5\pi}{4} \cos \frac{5\pi}{6} - \sin \frac{5\pi}{4} \sin \frac{5\pi}{6} \] - **Option C:** \[ \sin \frac{5\pi}{12} = \sin \left( \frac{\pi}{4} + \frac{\pi}{6} \right) = \sin \frac{\pi}{4} \cos \frac{\pi}{6} - \cos \frac{\pi}{4} \sin \frac{\pi}{6} \] - **Option D:** \[ \sin \frac{5\pi}{12} = \sin \left( \frac{5\pi}{4} - \frac{5\pi}{6} \right) = \cos \frac{5\pi}{4} \cos \frac{5\pi}{6} + \sin \frac{5\pi}{4} \sin \frac{5\pi}{6} \] --- **The exact value of** \(\sin \frac{5\pi}{12
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning