Find the exact value of the arc length of each function f(x) in Exercises 31-46 on [a, b] by writing the arc length as a definite integral and then solving that integral. 31. f(x) = 3x + 1, [a, b] = [-1,4] 32. f(x) = 4 – x, [a, b] = [2,5] 33. f(x) = 2x3/2 +1, [a,b] = [1, 3] 34. f(x) = x/2, 35. f(x) = (2x + 3) 3/2, [a, b] = [-1, 1] 36. f(x) = 2(1 – x)3/2 + 3, [a,b] = [-2, 0] 37. f(x) = /9 –x², [a, b] = [-3, 3] 38. f(x) = /1– x², 39. f(x) = */2 – x/2, [a, b] = [0, 1] [a, b] = [0, 2] [a, b] = [–1, 1] %3D 40. f(x) = (1 – x²/3) 3/2, [a, b] = [0, 1] 41. f(x) = (4 – x²/3) 3/2, [a, b] = [0,2] 42. f(x) = x², [a, b] = [-1,1] 1 43. f(x) = x² - In x, [a, b] = [1, 2] [a, b] = [0, ] 45. f(x) = In(sinx), [a, b] = |,| 44. f(x) = In(cos x), Зл x* + 3 46. f(x) [a, b] = [1,3] 6r

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Find the exact value of the arc length of each function f(x) in
Exercises 31-46 on [a, b] by writing the arc length as a definite
integral and then solving that integral.
31. f(x) = 3x + 1, [a, b] = [-1,4]
32. f(x) = 4 – x, [a, b] = [2,5]
33. f(x) = 2x3/2 +1, [a,b] = [1, 3]
34. f(x) = x/2,
35. f(x) = (2x + 3) 3/2, [a, b] = [-1, 1]
36. f(x) = 2(1 – x)3/2 + 3, [a,b] = [-2, 0]
37. f(x) = /9 –x², [a, b] = [-3, 3]
38. f(x) = /1– x²,
39. f(x) = */2 – x/2, [a, b] = [0, 1]
[a, b] = [0, 2]
[a, b] = [–1, 1]
%3D
40. f(x) = (1 – x²/3) 3/2, [a, b] = [0, 1]
41. f(x) = (4 – x²/3) 3/2, [a, b] = [0,2]
42. f(x) = x², [a, b] = [-1,1]
1
43. f(x) = x² - In x, [a, b] = [1, 2]
[a, b] = [0, ]
45. f(x) = In(sinx), [a, b] = |,|
44. f(x) = In(cos x),
Зл
x* + 3
46. f(x)
[a, b] = [1,3]
6r
Transcribed Image Text:Find the exact value of the arc length of each function f(x) in Exercises 31-46 on [a, b] by writing the arc length as a definite integral and then solving that integral. 31. f(x) = 3x + 1, [a, b] = [-1,4] 32. f(x) = 4 – x, [a, b] = [2,5] 33. f(x) = 2x3/2 +1, [a,b] = [1, 3] 34. f(x) = x/2, 35. f(x) = (2x + 3) 3/2, [a, b] = [-1, 1] 36. f(x) = 2(1 – x)3/2 + 3, [a,b] = [-2, 0] 37. f(x) = /9 –x², [a, b] = [-3, 3] 38. f(x) = /1– x², 39. f(x) = */2 – x/2, [a, b] = [0, 1] [a, b] = [0, 2] [a, b] = [–1, 1] %3D 40. f(x) = (1 – x²/3) 3/2, [a, b] = [0, 1] 41. f(x) = (4 – x²/3) 3/2, [a, b] = [0,2] 42. f(x) = x², [a, b] = [-1,1] 1 43. f(x) = x² - In x, [a, b] = [1, 2] [a, b] = [0, ] 45. f(x) = In(sinx), [a, b] = |,| 44. f(x) = In(cos x), Зл x* + 3 46. f(x) [a, b] = [1,3] 6r
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning