Find the exact length of the curve. y = In(sec(x)), 0≤x≤ w|ले

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question

In terms of parametric derivatives, how can you determine when a parametric curve has a horizontal tangent line? Similarly, how can you determine when the tangent line will be vertical?

 

**Problem Statement:**

Find the exact length of the curve.

\[ y = \ln(\sec(x)), \quad 0 \leq x \leq \frac{\pi}{3} \]

**Explanation:**

To find the exact length of the given curve \( y = \ln(\sec(x)) \) over the interval from \( x = 0 \) to \( x = \frac{\pi}{3} \), you need to use the arc length formula for a function \( y = f(x) \):

\[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \]

### Step-by-Step Solution:

1. **Function and Derivative:**
   
   First, find the derivative of \( y = \ln(\sec(x)) \).

   Since \(\sec(x) = \frac{1}{\cos(x)}\), we get:

   \[ y = \ln(\sec(x)) = \ln\left(\frac{1}{\cos(x)}\right) = -\ln(\cos(x)) \]

   Using the chain rule:

   \[ \frac{dy}{dx} = -\frac{1}{\cos(x)} \cdot (-\sin(x)) = \tan(x) \]

2. **Arc Length Formula:**

   Substitute \(\frac{dy}{dx} = \tan(x)\) into the arc length formula:

   \[ L = \int_{0}^{\frac{\pi}{3}} \sqrt{1 + \tan^2(x)} \, dx \]

3. **Simplify the Integral:**

   Since \( 1 + \tan^2(x) = \sec^2(x) \), the integral becomes:

   \[ L = \int_{0}^{\frac{\pi}{3}} \sqrt{\sec^2(x)} \, dx = \int_{0}^{\frac{\pi}{3}} \sec(x) \, dx \]

4. **Evaluate the Integral:**

   The integral of \(\sec(x)\) is:

   \[ \int \sec(x) \, dx = \ln |\sec(x) + \tan(x)| + C \]

   Therefore:

   \[ L = \left. \ln |\sec(x) + \tan(x)| \right|
Transcribed Image Text:**Problem Statement:** Find the exact length of the curve. \[ y = \ln(\sec(x)), \quad 0 \leq x \leq \frac{\pi}{3} \] **Explanation:** To find the exact length of the given curve \( y = \ln(\sec(x)) \) over the interval from \( x = 0 \) to \( x = \frac{\pi}{3} \), you need to use the arc length formula for a function \( y = f(x) \): \[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] ### Step-by-Step Solution: 1. **Function and Derivative:** First, find the derivative of \( y = \ln(\sec(x)) \). Since \(\sec(x) = \frac{1}{\cos(x)}\), we get: \[ y = \ln(\sec(x)) = \ln\left(\frac{1}{\cos(x)}\right) = -\ln(\cos(x)) \] Using the chain rule: \[ \frac{dy}{dx} = -\frac{1}{\cos(x)} \cdot (-\sin(x)) = \tan(x) \] 2. **Arc Length Formula:** Substitute \(\frac{dy}{dx} = \tan(x)\) into the arc length formula: \[ L = \int_{0}^{\frac{\pi}{3}} \sqrt{1 + \tan^2(x)} \, dx \] 3. **Simplify the Integral:** Since \( 1 + \tan^2(x) = \sec^2(x) \), the integral becomes: \[ L = \int_{0}^{\frac{\pi}{3}} \sqrt{\sec^2(x)} \, dx = \int_{0}^{\frac{\pi}{3}} \sec(x) \, dx \] 4. **Evaluate the Integral:** The integral of \(\sec(x)\) is: \[ \int \sec(x) \, dx = \ln |\sec(x) + \tan(x)| + C \] Therefore: \[ L = \left. \ln |\sec(x) + \tan(x)| \right|
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning