Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
This question was asked before, but I'm being told its incorrect. Can I get someone else to answer this?
![**Problem Statement:**
Find the exact length of the curve for the given function.
**Function:**
\[ y = 1 + 8x^{3/2} \]
**Interval:**
\[ 0 \leq x \leq 1 \]
**Solution Approach:**
To find the exact length of the curve, we will use the arc length formula for a curve defined by \( y = f(x) \) on the interval \([a, b]\):
\[ L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \]
1. **Differentiate the Function:**
Find the derivative \(\frac{dy}{dx}\) of the given function \( y = 1 + 8x^{3/2} \).
2. **Set Up the Integral:**
Substitute the derivative into the arc length formula and calculate the integral:
\[ L = \int_{0}^{1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \]
This approach will yield the exact length of the curve from \( x = 0 \) to \( x = 1 \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8abda4d0-aef7-4bfa-8fb9-182b00f7a9e2%2F5eb020f1-5019-47af-a1f5-0a36f4b50f14%2Fckuc92j_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the exact length of the curve for the given function.
**Function:**
\[ y = 1 + 8x^{3/2} \]
**Interval:**
\[ 0 \leq x \leq 1 \]
**Solution Approach:**
To find the exact length of the curve, we will use the arc length formula for a curve defined by \( y = f(x) \) on the interval \([a, b]\):
\[ L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \]
1. **Differentiate the Function:**
Find the derivative \(\frac{dy}{dx}\) of the given function \( y = 1 + 8x^{3/2} \).
2. **Set Up the Integral:**
Substitute the derivative into the arc length formula and calculate the integral:
\[ L = \int_{0}^{1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \]
This approach will yield the exact length of the curve from \( x = 0 \) to \( x = 1 \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning