Find the equation of the Tangent Line and Normal Line of the given equation at the given point. Graph the function and lines ▪ f(x)=2x²-3x²-2x+5 Script 1% This program computes for the Tangent Line / Normal Line of a curve % about a given point 2 %define x for symbolic processing 3 4 %IDENTIFY the function f(x) 5 f(x) = 6 7 %DETERMINE the point of tangency (This will be a random point) 8 x0=randi ([-5,5]) 9 %SOLVE for the ordinate of the point of tangency 10 yo=f(x0); %Evaluate y given value fox 11 12 %FIND the slope function 13 yprime = 14 %Determine the slope at the given xo %Evaluate the slope 16 m 17 18 %Solve the equation of the tangent line 19 ytangent= 20 21 %Solve the Equation of the normal line 22 ynormal = 23 %Solve for the first derivative ✓ 24 %DISPLAYING RESULTS 25 fprintf('The tangent line to f(x) =%s at (%.2f, %.2f) is y = %s\n', string(f(x)),x0,ye, string(ytangent)) 26 fprintf('The normal line to f(x) =%s at (%.2f, %.2f) is y = %s \n',string(f(x)), x0, yo, string(ynormal)) 27 28 %PLOTTING 20 21 % Solve the Equation of the normal line 22 ynormal = 23 28 %PLOTTING 29 g1-ezplot (f, [-15, 15]); 30 set (g1, 'color', 'b') 31 grid on 32 hold on 24 %DISPLAYING RESULTS 25 fprintf('The tangent line to f(x) =%s at (%.2f, %.2f) is y = %s\n', string(f(x)),x0,ye, string(ytangent)) 26 fprintf('The normal line to f(x) =%s at (%.2f , %.2f) is y = %s \n', string(f(x)),x0,ye, string(ynormal)) 27 33 plot (x0, ye, '*') 34 text (x0+1, yo, "Point of Tangency") 35 g2=ezplot(ytangent, [-15,15]); 36 text (5,5, ["y (Tangent)=", string(ytangent)]) 37 pause (1) 38 set (g2, 'color', 'm') 39 pause (1) Save 40 g3=ezplot(ynormal, [-15,15]); 41 text(3,3, ["y (Normal)=", string(ynormal)]) 42 set (g3, 'color', 'c'); 43 title("Tangent Line and Normal Line") 44 C Reset MATLAB Documentat
Find the equation of the Tangent Line and Normal Line of the given equation at the given point. Graph the function and lines ▪ f(x)=2x²-3x²-2x+5 Script 1% This program computes for the Tangent Line / Normal Line of a curve % about a given point 2 %define x for symbolic processing 3 4 %IDENTIFY the function f(x) 5 f(x) = 6 7 %DETERMINE the point of tangency (This will be a random point) 8 x0=randi ([-5,5]) 9 %SOLVE for the ordinate of the point of tangency 10 yo=f(x0); %Evaluate y given value fox 11 12 %FIND the slope function 13 yprime = 14 %Determine the slope at the given xo %Evaluate the slope 16 m 17 18 %Solve the equation of the tangent line 19 ytangent= 20 21 %Solve the Equation of the normal line 22 ynormal = 23 %Solve for the first derivative ✓ 24 %DISPLAYING RESULTS 25 fprintf('The tangent line to f(x) =%s at (%.2f, %.2f) is y = %s\n', string(f(x)),x0,ye, string(ytangent)) 26 fprintf('The normal line to f(x) =%s at (%.2f, %.2f) is y = %s \n',string(f(x)), x0, yo, string(ynormal)) 27 28 %PLOTTING 20 21 % Solve the Equation of the normal line 22 ynormal = 23 28 %PLOTTING 29 g1-ezplot (f, [-15, 15]); 30 set (g1, 'color', 'b') 31 grid on 32 hold on 24 %DISPLAYING RESULTS 25 fprintf('The tangent line to f(x) =%s at (%.2f, %.2f) is y = %s\n', string(f(x)),x0,ye, string(ytangent)) 26 fprintf('The normal line to f(x) =%s at (%.2f , %.2f) is y = %s \n', string(f(x)),x0,ye, string(ynormal)) 27 33 plot (x0, ye, '*') 34 text (x0+1, yo, "Point of Tangency") 35 g2=ezplot(ytangent, [-15,15]); 36 text (5,5, ["y (Tangent)=", string(ytangent)]) 37 pause (1) 38 set (g2, 'color', 'm') 39 pause (1) Save 40 g3=ezplot(ynormal, [-15,15]); 41 text(3,3, ["y (Normal)=", string(ynormal)]) 42 set (g3, 'color', 'c'); 43 title("Tangent Line and Normal Line") 44 C Reset MATLAB Documentat
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
DO THIS IN MATLAB
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 1 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,