Find the domain of the function. (Enter your answer using interval notation.) u + 2 (u) 2 2 +

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Find the domain of the function. (Enter your answer using interval notation.)**

\[ f(u) = \frac{u + 2}{2 + \frac{2}{u + 2}} \]

---

### Explanation

To find the domain of the function, we need to determine for which values of \( u \) the function is defined. The function is a fraction, and it is undefined when the denominator equals zero.

1. **Denominator Analysis:**
   \[
   2 + \frac{2}{u + 2} \neq 0
   \]

   - First, identify where \( \frac{2}{u + 2} \) is undefined:
     \[
     u + 2 \neq 0 \quad \Rightarrow \quad u \neq -2
     \]

   - Next, solve for when the entire denominator is zero:
     \[
     2 + \frac{2}{u + 2} = 0
     \]
     \[
     \frac{2}{u + 2} = -2
     \]
     \[
     2 = -2(u + 2)
     \]
     \[
     2 = -2u - 4
     \]
     \[
     6 = -2u
     \]
     \[
     u = -3
     \]

2. **Domain:**
   - Therefore, the domain is all real numbers except \( u = -2 \) and \( u = -3 \).

### Domain in Interval Notation

\[
(-\infty, -3) \cup (-3, -2) \cup (-2, \infty)
\]
Transcribed Image Text:**Find the domain of the function. (Enter your answer using interval notation.)** \[ f(u) = \frac{u + 2}{2 + \frac{2}{u + 2}} \] --- ### Explanation To find the domain of the function, we need to determine for which values of \( u \) the function is defined. The function is a fraction, and it is undefined when the denominator equals zero. 1. **Denominator Analysis:** \[ 2 + \frac{2}{u + 2} \neq 0 \] - First, identify where \( \frac{2}{u + 2} \) is undefined: \[ u + 2 \neq 0 \quad \Rightarrow \quad u \neq -2 \] - Next, solve for when the entire denominator is zero: \[ 2 + \frac{2}{u + 2} = 0 \] \[ \frac{2}{u + 2} = -2 \] \[ 2 = -2(u + 2) \] \[ 2 = -2u - 4 \] \[ 6 = -2u \] \[ u = -3 \] 2. **Domain:** - Therefore, the domain is all real numbers except \( u = -2 \) and \( u = -3 \). ### Domain in Interval Notation \[ (-\infty, -3) \cup (-3, -2) \cup (-2, \infty) \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning