Find the domain of the Bessel function of order 0 defined by the following. Solution 8 Jo(x) = (-1)x2n (-1)x2n n = 0 2²n (n!)² Let an lim n→∞ = [22n (n!)²] Then we get the following. an+1 n (-1) + 1x2(n + 1) = lim 22(n+1)(n+1)!² n-→∞ = lim +27 +2 22n (n!)2 (-1)x2n 22n (n!)2 x2n = 0 n→ 22n + 2(n + 1)²(n!)² = lim n→∞ < 1 for all x Thus, by the Ratio Test, the given series converges for all values of x. In other words, the domain of the Bessel function Jo is (−∞, ∞) = R.
Find the domain of the Bessel function of order 0 defined by the following. Solution 8 Jo(x) = (-1)x2n (-1)x2n n = 0 2²n (n!)² Let an lim n→∞ = [22n (n!)²] Then we get the following. an+1 n (-1) + 1x2(n + 1) = lim 22(n+1)(n+1)!² n-→∞ = lim +27 +2 22n (n!)2 (-1)x2n 22n (n!)2 x2n = 0 n→ 22n + 2(n + 1)²(n!)² = lim n→∞ < 1 for all x Thus, by the Ratio Test, the given series converges for all values of x. In other words, the domain of the Bessel function Jo is (−∞, ∞) = R.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Fill in the blank
![Find the domain of the Bessel function of order 0 defined by the following.
Solution
8
Jo(x) = (-1)x2n
(-1)x2n
n = 0 2²n (n!)²
Let an
lim
n→∞
=
[22n (n!)²]
Then we get the following.
an+1
n
(-1) + 1x2(n + 1)
= lim 22(n+1)(n+1)!²
n-→∞
=
lim
+27 +2
22n (n!)2
(-1)x2n
22n (n!)2
x2n
=
0
n→ 22n + 2(n + 1)²(n!)²
=
lim
n→∞
< 1
for all x
Thus, by the Ratio Test, the given series converges for all values of x. In other words, the domain of the Bessel function Jo is (−∞, ∞) = R.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F74f6cd98-5612-491b-92c1-2e44f23d515f%2Fdf886fa1-7b5b-485b-bb20-1a205eafa2d0%2Fsc19sx_processed.png&w=3840&q=75)
Transcribed Image Text:Find the domain of the Bessel function of order 0 defined by the following.
Solution
8
Jo(x) = (-1)x2n
(-1)x2n
n = 0 2²n (n!)²
Let an
lim
n→∞
=
[22n (n!)²]
Then we get the following.
an+1
n
(-1) + 1x2(n + 1)
= lim 22(n+1)(n+1)!²
n-→∞
=
lim
+27 +2
22n (n!)2
(-1)x2n
22n (n!)2
x2n
=
0
n→ 22n + 2(n + 1)²(n!)²
=
lim
n→∞
< 1
for all x
Thus, by the Ratio Test, the given series converges for all values of x. In other words, the domain of the Bessel function Jo is (−∞, ∞) = R.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning