Find the divergence of the vector field V(x, y, z) = -7exyi – eбxyj + 4e⁹yzk. (Give an exact answer. Use symbolic notation and fractions where needed.) divV =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem: Finding the Divergence of a Vector Field**

Find the divergence of the vector field \( \mathbf{V}(x, y, z) = -7e^{xy}\mathbf{i} - e^{6xy}\mathbf{j} + 4e^{9yz}\mathbf{k} \).

*Instructions:*
- Give an exact answer.
- Use symbolic notation and fractions where needed.

**Solution:**

Calculate the divergence \( \text{div} \mathbf{V} \) of the vector field. The divergence of a vector field \( \mathbf{V} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k} \) is given by:

\[
\text{div} \mathbf{V} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}
\]

For the given vector field \( \mathbf{V}(x, y, z) = -7e^{xy}\mathbf{i} - e^{6xy}\mathbf{j} + 4e^{9yz}\mathbf{k} \), we identify:
- \( P = -7e^{xy} \)
- \( Q = -e^{6xy} \)
- \( R = 4e^{9yz} \)

Compute each partial derivative:
1. \(\frac{\partial P}{\partial x} = \frac{\partial}{\partial x}(-7e^{xy}) = -7ye^{xy}\)
2. \(\frac{\partial Q}{\partial y} = \frac{\partial}{\partial y}(-e^{6xy}) = -6xe^{6xy}\)
3. \(\frac{\partial R}{\partial z} = \frac{\partial}{\partial z}(4e^{9yz}) = 36ye^{9yz}\)

Thus, the divergence is:
\[
\text{div} \mathbf{V} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = -7ye^{xy} - 6xe^{6xy} + 36ye^{9yz}
\]

So, your final answer is:
\[
\text{div} \mathbf{V} = -7ye^{
Transcribed Image Text:**Problem: Finding the Divergence of a Vector Field** Find the divergence of the vector field \( \mathbf{V}(x, y, z) = -7e^{xy}\mathbf{i} - e^{6xy}\mathbf{j} + 4e^{9yz}\mathbf{k} \). *Instructions:* - Give an exact answer. - Use symbolic notation and fractions where needed. **Solution:** Calculate the divergence \( \text{div} \mathbf{V} \) of the vector field. The divergence of a vector field \( \mathbf{V} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k} \) is given by: \[ \text{div} \mathbf{V} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \] For the given vector field \( \mathbf{V}(x, y, z) = -7e^{xy}\mathbf{i} - e^{6xy}\mathbf{j} + 4e^{9yz}\mathbf{k} \), we identify: - \( P = -7e^{xy} \) - \( Q = -e^{6xy} \) - \( R = 4e^{9yz} \) Compute each partial derivative: 1. \(\frac{\partial P}{\partial x} = \frac{\partial}{\partial x}(-7e^{xy}) = -7ye^{xy}\) 2. \(\frac{\partial Q}{\partial y} = \frac{\partial}{\partial y}(-e^{6xy}) = -6xe^{6xy}\) 3. \(\frac{\partial R}{\partial z} = \frac{\partial}{\partial z}(4e^{9yz}) = 36ye^{9yz}\) Thus, the divergence is: \[ \text{div} \mathbf{V} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = -7ye^{xy} - 6xe^{6xy} + 36ye^{9yz} \] So, your final answer is: \[ \text{div} \mathbf{V} = -7ye^{
Expert Solution
steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,