Find the distance from the point Q = (4, -3,5) to the plane - 2x-3y + 2z=6 □
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Can anyone please help me to solve this problem?
![The image contains the following handwritten text:
"Find the distance from the point Q = (4, -3, 5) to the plane -2x - 3y + 2z = 6."
There are no graphs or diagrams included in the image, just a box for writing the answer to the problem on lined notebook paper.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F99d15f92-0bff-4b4d-a47e-2ac33d144271%2Fd139edbd-a48b-4eb6-89a1-57c4350ed249%2Fybyq4ea_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The image contains the following handwritten text:
"Find the distance from the point Q = (4, -3, 5) to the plane -2x - 3y + 2z = 6."
There are no graphs or diagrams included in the image, just a box for writing the answer to the problem on lined notebook paper.
![### Distance from a Point to a Plane
**Problem:**
Find the distance from the point \( Q = (4, -3, 5) \) to the plane given by the equation \(-2x - 3y + 2z = 6\).
**Explanation:**
To find the distance \( d \) from a point \( (x_1, y_1, z_1) \) to a plane given by the equation \( ax + by + cz = d_0 \), use the formula:
\[
d = \frac{|ax_1 + by_1 + cz_1 - d_0|}{\sqrt{a^2 + b^2 + c^2}}
\]
**Steps:**
1. **Identify the components:**
- Point \( Q(x_1, y_1, z_1) = (4, -3, 5) \)
- Plane equation coefficients: \( a = -2 \), \( b = -3 \), \( c = 2 \), and \( d_0 = 6 \).
2. **Substitute into the formula:**
- Compute \( ax_1 + by_1 + cz_1: \)
\[
-2(4) - 3(-3) + 2(5) = -8 + 9 + 10 = 11
\]
- Substitute into the distance formula:
\[
d = \frac{|11 - 6|}{\sqrt{(-2)^2 + (-3)^2 + 2^2}}
\]
3. **Calculate:**
\[
d = \frac{|5|}{\sqrt{4 + 9 + 4}} = \frac{5}{\sqrt{17}}
\]
**Final Answer:**
The distance from point \( Q = (4, -3, 5) \) to the plane \(-2x - 3y + 2z = 6\) is \( \frac{5}{\sqrt{17}} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F99d15f92-0bff-4b4d-a47e-2ac33d144271%2Fd139edbd-a48b-4eb6-89a1-57c4350ed249%2Fpmfcx9d_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Distance from a Point to a Plane
**Problem:**
Find the distance from the point \( Q = (4, -3, 5) \) to the plane given by the equation \(-2x - 3y + 2z = 6\).
**Explanation:**
To find the distance \( d \) from a point \( (x_1, y_1, z_1) \) to a plane given by the equation \( ax + by + cz = d_0 \), use the formula:
\[
d = \frac{|ax_1 + by_1 + cz_1 - d_0|}{\sqrt{a^2 + b^2 + c^2}}
\]
**Steps:**
1. **Identify the components:**
- Point \( Q(x_1, y_1, z_1) = (4, -3, 5) \)
- Plane equation coefficients: \( a = -2 \), \( b = -3 \), \( c = 2 \), and \( d_0 = 6 \).
2. **Substitute into the formula:**
- Compute \( ax_1 + by_1 + cz_1: \)
\[
-2(4) - 3(-3) + 2(5) = -8 + 9 + 10 = 11
\]
- Substitute into the distance formula:
\[
d = \frac{|11 - 6|}{\sqrt{(-2)^2 + (-3)^2 + 2^2}}
\]
3. **Calculate:**
\[
d = \frac{|5|}{\sqrt{4 + 9 + 4}} = \frac{5}{\sqrt{17}}
\]
**Final Answer:**
The distance from point \( Q = (4, -3, 5) \) to the plane \(-2x - 3y + 2z = 6\) is \( \frac{5}{\sqrt{17}} \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)