Find the distance between u 1- and z = A
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
find a unit
![### Problem 14
**Question:**
Find the distance between the vectors **u** and **z**:
u = \(\begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}\)
and
z = \(\begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}\).
**Explanation:**
To determine the distance between two vectors **u** and **z** in 3-dimensional space, we use the Euclidean distance formula. This formula is:
\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \]
**Steps:**
1. Identify the components of vectors **u** and **z**.
- For **u** = \(\begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}\) and **z** = \(\begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}\), we have:
- \(u_1 = 0\), \(u_2 = -5\), \(u_3 = 2\)
- \(z_1 = -4\), \(z_2 = -1\), \(z_3 = 4\)
2. Substitute these values into the Euclidean distance formula:
\[
\text{Distance} = \sqrt{(-4 - 0)^2 + (-1 + 5)^2 + (4 - 2)^2}
\]
3. Simplify the calculation step-by-step:
\[
= \sqrt{(-4)^2 + (4)^2 + (2)^2}
\]
\[
= \sqrt{16 + 16 + 4}
\]
\[
= \sqrt{36}
\]
\[
= 6
\]
**Conclusion:**
The distance between the vectors **u** and **z** is 6 units.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F324f16c4-c4e5-4b06-b074-f261b39e021a%2F36f43683-dcc0-40b9-b694-c832b7c1202a%2Fofhf1rd_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem 14
**Question:**
Find the distance between the vectors **u** and **z**:
u = \(\begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}\)
and
z = \(\begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}\).
**Explanation:**
To determine the distance between two vectors **u** and **z** in 3-dimensional space, we use the Euclidean distance formula. This formula is:
\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \]
**Steps:**
1. Identify the components of vectors **u** and **z**.
- For **u** = \(\begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}\) and **z** = \(\begin{bmatrix} -4 \\ -1 \\ 4 \end{bmatrix}\), we have:
- \(u_1 = 0\), \(u_2 = -5\), \(u_3 = 2\)
- \(z_1 = -4\), \(z_2 = -1\), \(z_3 = 4\)
2. Substitute these values into the Euclidean distance formula:
\[
\text{Distance} = \sqrt{(-4 - 0)^2 + (-1 + 5)^2 + (4 - 2)^2}
\]
3. Simplify the calculation step-by-step:
\[
= \sqrt{(-4)^2 + (4)^2 + (2)^2}
\]
\[
= \sqrt{16 + 16 + 4}
\]
\[
= \sqrt{36}
\]
\[
= 6
\]
**Conclusion:**
The distance between the vectors **u** and **z** is 6 units.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)