Find the dimension of the eigenspace corresponding to the eigenvalue i = 5. 5 0 0 0 5 1 0 0 5

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(Linear Algebra)

10.

7.1

Pls help 

thanks

**Problem Statement:**

Find the dimension of the eigenspace corresponding to the eigenvalue \( \lambda = 5 \).

**Matrix:**

\[
\begin{bmatrix}
5 & 0 & 0 \\
0 & 5 & 1 \\
0 & 0 & 5 \\
\end{bmatrix}
\]

**Solution:**

- Determine the eigenspace for the eigenvalue \( \lambda = 5 \) by finding \( \textbf{A} - 5\textbf{I} \), where \(\textbf{A}\) is the given matrix and \(\textbf{I}\) is the identity matrix:

\[
\begin{bmatrix}
5 & 0 & 0 \\
0 & 5 & 1 \\
0 & 0 & 5 \\
\end{bmatrix}
-
\begin{bmatrix}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5 \\
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

- The resulting matrix represents the system of equations to solve for the eigenspace. The dimension of the null space (solutions to the system) gives the dimension of the eigenspace.

**Answer Box:**
The box provided is meant for the input of the answer, which in this case would be the dimension calculated from solving the system of equations derived from the matrix. The red "X" indicates an incorrect input.
Transcribed Image Text:**Problem Statement:** Find the dimension of the eigenspace corresponding to the eigenvalue \( \lambda = 5 \). **Matrix:** \[ \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \\ \end{bmatrix} \] **Solution:** - Determine the eigenspace for the eigenvalue \( \lambda = 5 \) by finding \( \textbf{A} - 5\textbf{I} \), where \(\textbf{A}\) is the given matrix and \(\textbf{I}\) is the identity matrix: \[ \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \\ \end{bmatrix} - \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \\ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix} \] - The resulting matrix represents the system of equations to solve for the eigenspace. The dimension of the null space (solutions to the system) gives the dimension of the eigenspace. **Answer Box:** The box provided is meant for the input of the answer, which in this case would be the dimension calculated from solving the system of equations derived from the matrix. The red "X" indicates an incorrect input.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,