Find the dervative: -1 y = sinh 2 dy dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Topic: Calculus - Derivatives of Inverse Hyperbolic Functions**

**Exercise: Find the Derivative**

Given the function:

\[ y = \sinh^{-1} \left( \frac{x}{2} \right) \]

Determine the derivative \(\frac{dy}{dx}\).

**Solution:**

To find the derivative, we utilize the formula for the derivative of the inverse hyperbolic sine function:

For \( y = \sinh^{-1}(u) \), the derivative is \(\frac{dy}{dx} = \frac{1}{\sqrt{u^2 + 1}} \cdot \frac{du}{dx}\).

In this exercise, \( u = \frac{x}{2} \).

1. Calculate \(\frac{du}{dx}\):
   \[\frac{du}{dx} = \frac{1}{2}\]

2. Substitute \( u = \frac{x}{2} \) into the derivative formula:
   \[\frac{dy}{dx} = \frac{1}{\sqrt{\left(\frac{x}{2}\right)^2 + 1}} \cdot \frac{1}{2}\]

3. Simplify:
   \[\frac{dy}{dx} = \frac{1}{2\sqrt{\frac{x^2}{4} + 1}} = \frac{1}{2\sqrt{\frac{x^2 + 4}{4}}} = \frac{1}{\sqrt{x^2 + 4}}\]

Thus, the derivative is:

\[\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 4}}\]
Transcribed Image Text:**Topic: Calculus - Derivatives of Inverse Hyperbolic Functions** **Exercise: Find the Derivative** Given the function: \[ y = \sinh^{-1} \left( \frac{x}{2} \right) \] Determine the derivative \(\frac{dy}{dx}\). **Solution:** To find the derivative, we utilize the formula for the derivative of the inverse hyperbolic sine function: For \( y = \sinh^{-1}(u) \), the derivative is \(\frac{dy}{dx} = \frac{1}{\sqrt{u^2 + 1}} \cdot \frac{du}{dx}\). In this exercise, \( u = \frac{x}{2} \). 1. Calculate \(\frac{du}{dx}\): \[\frac{du}{dx} = \frac{1}{2}\] 2. Substitute \( u = \frac{x}{2} \) into the derivative formula: \[\frac{dy}{dx} = \frac{1}{\sqrt{\left(\frac{x}{2}\right)^2 + 1}} \cdot \frac{1}{2}\] 3. Simplify: \[\frac{dy}{dx} = \frac{1}{2\sqrt{\frac{x^2}{4} + 1}} = \frac{1}{2\sqrt{\frac{x^2 + 4}{4}}} = \frac{1}{\sqrt{x^2 + 4}}\] Thus, the derivative is: \[\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 4}}\]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning