Find the derivative of the function. y= -6x In (5x + 8) dy dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
4.5 5
**Problem Statement**

Find the derivative of the function.

\[ y = -6x \ln(5x + 8) \]

\[ \frac{dy}{dx} = \Box \]

**Explanation**

To find the derivative of the function \( y = -6x \ln(5x + 8) \), we will use the product rule and the chain rule of differentiation. The product rule states that for two functions \( u(x) \) and \( v(x) \), the derivative of their product is given by:

\[ (uv)' = u'v + uv' \]

Here, let \( u(x) = -6x \) and \( v(x) = \ln(5x + 8) \). Then, find the derivatives \( u'(x) \) and \( v'(x) \).

1. Derivative of \( u(x) \):
   \[ u'(x) = -6 \]

2. Derivative of \( v(x) \) using the chain rule:
   The derivative of \( \ln(5x + 8) \) is \( \frac{1}{5x + 8} \times 5 \) (since the derivative of the inside function, \( 5x + 8 \), is 5).

   \[ v'(x) = \frac{5}{5x + 8} \]

Apply the product rule:

\[ \frac{dy}{dx} = (-6)(\ln(5x + 8)) + (-6x)\left(\frac{5}{5x + 8}\right) \]

Simplify to get the final derivative expression.
Transcribed Image Text:**Problem Statement** Find the derivative of the function. \[ y = -6x \ln(5x + 8) \] \[ \frac{dy}{dx} = \Box \] **Explanation** To find the derivative of the function \( y = -6x \ln(5x + 8) \), we will use the product rule and the chain rule of differentiation. The product rule states that for two functions \( u(x) \) and \( v(x) \), the derivative of their product is given by: \[ (uv)' = u'v + uv' \] Here, let \( u(x) = -6x \) and \( v(x) = \ln(5x + 8) \). Then, find the derivatives \( u'(x) \) and \( v'(x) \). 1. Derivative of \( u(x) \): \[ u'(x) = -6 \] 2. Derivative of \( v(x) \) using the chain rule: The derivative of \( \ln(5x + 8) \) is \( \frac{1}{5x + 8} \times 5 \) (since the derivative of the inside function, \( 5x + 8 \), is 5). \[ v'(x) = \frac{5}{5x + 8} \] Apply the product rule: \[ \frac{dy}{dx} = (-6)(\ln(5x + 8)) + (-6x)\left(\frac{5}{5x + 8}\right) \] Simplify to get the final derivative expression.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning